1.**Adversarial attack on graph structured data.** ICML 2018. [paper](http://proceedings.mlr.press/v80/dai18b/dai18b.pdf)
2.**Topology attack and defense for graph neural networks: An optimization perspective.** IJCAI 2019. [paper](https://www.ijcai.org/Proceedings/2019/0550.pdf)
3. **Adversarial examples for graph data: Deep insights into attack and
8.**Graph adversarial training: Dynamically regularizing based on graph structure.** IEEE TKDE 2021. [paper](https://ieeexplore.ieee.org/abstract/document/8924766)
9.**Robust training of graph convolutional networks via latent perturbation.** PKDD 2020. [paper](https://link.springer.com/chapter/10.1007/978-3-030-67664-3_24)
10.**Topology attack and defense for graph neural networks: An optimization perspective.** IJCAI 2019. [paper](https://www.ijcai.org/Proceedings/2019/0550.pdf)
11.**Certifiable robustness to graph perturbations.** NeurIPS 2019. [paper](https://proceedings.neurips.cc/paper/2019/file/e2f374c3418c50bc30d67d5f7454a5b4-Paper.pdf)
12.**Certifiable robustness and robust training for graph convolutional networks.** KDD 2019. [paper](https://dl.acm.org/doi/abs/10.1145/3292500.3330905)
13.**Adversarial immunization for certifiable robustness on graphs.** WSDM 2021. [paper](https://dl.acm.org/doi/abs/10.1145/3437963.3441782)
14.**Comparing and detecting adversarial attacks for graph deep learning.** ICLR 2019. [paper](https://rlgm.github.io/papers/57.pdf)
<a name="explainability" />
## Explainability
<a name="explainability-self" />
### Interpretable GNNs
1.**Convolutional networks on graphs for learning molecular fingerprints.** NeurIPS 2015. [paper](https://papers.nips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf)
2.**Substructure assembling network for graph classification.** AAAI 2018. [paper](https://ojs.aaai.org/index.php/AAAI/article/view/11742/11601)
3.**Towards explainable representation of time-evolving graphs via spatial-temporal graph attention networks.** CIKM 2019. [paper](https://dl.acm.org/doi/10.1145/3357384.3358155)
5.**Protgnn: Towards self-explaining graph neural networks.** AAAI 2022. [paper](https://arxiv.org/pdf/2112.00911.pdf)
6.**Motif-driven contrastive learning of graph representations.** AAAI 2021. [paper](https://ojs.aaai.org/index.php/AAAI/article/view/17986)
7.**Discovering invariant rationales for graph neural networks.** ICLR 2022. [paper](https://openreview.net/pdf?id=hGXij5rfiHw)
8.**Graph information bottleneck for subgraph recognition.** ICLR 2021. [paper](https://openreview.net/pdf?id=bM4Iqfg8M2k)
<a name="explainability-post" />
### Post-hoc Explainers
1.**Explainability techniques for graph convolutional networks.** ICML 2019. [paper](https://arxiv.org/pdf/1905.13686.pdf)
2.**Explainability methods for graph convolutional neural networks.** CVPR 2019. [paper](https://openaccess.thecvf.com/content_CVPR_2019/papers/Pope_Explainability_Methods_for_Graph_Convolutional_Neural_Networks_CVPR_2019_paper.pdf)
3.**Gnnexplainer: Generating explanations for graph neural networks.** NeurIPS 2019. [paper](https://cs.stanford.edu/people/jure/pubs/gnnexplainer-neurips19.pdf)
4.**Parameterized explainer for graph neural network.** NeurIPS 2020. [paper](https://dl.acm.org/doi/pdf/10.5555/3495724.3497370)
5.**Hard masking for explaining graph neural networks.** OpenReview 2021. [paper](https://openreview.net/forum?id=uDN8pRAdsoC)
6.**Causal screening to interpret graph neural networks.** OpenReview 2020. [paper](https://openreview.net/forum?id=nzKv5vxZfge)
7.**Interpreting graph neural networks for NLP with differentiable edge masking.** ICLR 2021. [paper](https://openreview.net/pdf?id=WznmQa42ZAx)
8.**On explainability of graph neural networks via subgraph explorations.** ICML 2021. [paper](http://proceedings.mlr.press/v139/yuan21c/yuan21c.pdf)
9.**Cf-gnnexplainer: Counterfactual explanations for graph neural networks.** AISTATS 2022. [paper](https://proceedings.mlr.press/v151/lucic22a/lucic22a.pdf)
10.**Robust counterfactual explanations on graph neural networks.** NeurIPS 2021. [paper](https://openreview.net/pdf?id=wGmOLwb8ClT)
11.**Towards multi-grained explainability for graph neural networks.** NeurIPS 2021. [paper](https://openreview.net/pdf?id=e5vrkfc5aau)
12.**Learning and evaluating graph neural network explanations based on counterfactual and factual reasoning.** WWW 2022. [paper](https://dl.acm.org/doi/pdf/10.1145/3485447.3511948)
19.**Orphicx: A causality-inspired latent variable model for interpreting graph neural networks.** CVPR 2022. [paper](https://wanyu-lin.github.io/assets/publications/wanyu-cvpr2022.pdf)
20.**DEGREE: Decomposition based explanation for graph neural networks.** ICLR 2021. [paper](https://openreview.net/pdf?id=Ve0Wth3ptT_)
21.**Counterfactual graphs for explainable classification of brain networks.** KDD 2021. [paper](https://dl.acm.org/doi/pdf/10.1145/3447548.3467154)
22.**Generative causal explanations for graph neural networks.** ICML 2021. [paper](http://proceedings.mlr.press/v139/lin21d/lin21d.pdf)
11.**Privacy-preserving representation learning on graphs: A mutual information perspective.** KDD 2021. [paper](https://dl.acm.org/doi/abs/10.1145/3447548.3467273)
<a name="privacy-preserving" />
### Privacy-preserving Techniques for GNNs
<a name="privacy-preserving-FL" />
#### Federated Learning
1.**Federated dynamic graph neural networks with secure aggregation for video-based distributedsurveillance.** IEEE TIST 2022. [paper](https://dl.acm.org/doi/10.1145/3501808)
12.**Graphfl: A federated learning framework for semi-supervised node classification on graphs.** Arxiv 2020. [paper](https://arxiv.org/pdf/2012.04187.pdf)
13.**Fedgl: Federated graph learning framework with global self-supervision.** Arxiv 2021. [paper](https://arxiv.org/pdf/2105.03170.pdf)
1.**Compositional fairness constraints for graph embeddings.** ICML 2019. [paper](http://proceedings.mlr.press/v97/bose19a/bose19a.pdf)
2.**Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information.** WSDM 2021. [paper](https://dl.acm.org/doi/pdf/10.1145/3437963.3441752)
3.**Towards a unified framework for fair and stable graph representation learning.** UAI 2021. [paper](https://proceedings.mlr.press/v161/agarwal21b/agarwal21b.pdf)
4.**EDITS: modeling and mitigating data bias for graph neural networks.** WWW 2022. [paper](https://dl.acm.org/doi/pdf/10.1145/3485447.3512173)
5.**Inform: Individual fairness on graph mining.** KDD 2020. [paper](https://dl.acm.org/doi/pdf/10.1145/3394486.3403080)
6.**On dyadic fairness: Exploring and mitigating bias in graph connections.** ICLR 2021. [paper](https://openreview.net/pdf?id=xgGS6PmzNq6)
7.**Fairdrop: Biased edge dropout for enhancing fairness in graph representation learning.** IEEE TAI 2021. [paper](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9645324)
8.**Individual fairness for graph neural networks: A ranking based approach.** KDD 2021. [paper](https://dl.acm.org/doi/pdf/10.1145/3447548.3467266)
4.**Bag of tricks for training deeper graph neural networks: A comprehensive benchmark study.** IEEE TPAMI 2022. [paper](https://ieeexplore.ieee.org/abstract/document/9773017)
7.**HASHTAG: hash signatures for online detection of fault-injection attacks on deep neural networks.** ICCAD 2021. [paper](https://ieeexplore.ieee.org/abstract/document/9643556)
8.**Sensitive-sample fingerprinting of deep neural networks.** CVPR 2019. [paper](https://openaccess.thecvf.com/content_CVPR_2019/papers/He_Sensitive-Sample_Fingerprinting_of_Deep_Neural_Networks_CVPR_2019_paper.pdf)
10.**Proof of learning (pole): Empowering machine learning with consensus building on blockchains (demo).** AAAI 2021. [paper](https://ojs.aaai.org/index.php/AAAI/article/view/18013)
<a name="env" />
## Environmental well-being
<a name="env-scale" />
### Scalable GNN Architectures and Efficient Data Communication
1.**GraphSAINT: Graph Sampling Based Inductive Learning Method.** ICLR 2020. [paper](https://openreview.net/pdf?id=BJe8pkHFwS)
2.**Gnnautoscale: Scalable and expressive graph neural networks via historical embeddings.** ICML 2021. [paper](http://proceedings.mlr.press/v139/fey21a/fey21a.pdf)
4.**Training graph neural networks with 1000 layers.** ICML 2021. [paper](http://proceedings.mlr.press/v139/li21o/li21o.pdf)
5.**Pinnersage: Multi-modal user embedding framework for recommendations at pinterest.** KDD 2020. [paper](https://cs.stanford.edu/people/jure/pubs/pinnersage-kdd20.pdf)
6.**ETA prediction with graph neural networks in google maps.** CIKM 2021. [paper](https://dl.acm.org/doi/abs/10.1145/3459637.3481916)
7.**# Efficient Data Loader for Fast Sampling-Based GNN Training on Large Graphs.** IEEE TPDS 2021. [paper](https://ieeexplore.ieee.org/document/9376972)
7.**Degree-quant: Quantization-aware training for graph neural networks.** ICLR 2021. [paper](https://openreview.net/pdf?id=NSBrFgJAHg)
<a name="env-swhw" />
### Efficient Frameworks and Accelerators
1.**Fast graph representation learning with PyTorch Geometric.** ICLR 2019. [paper](https://rlgm.github.io/papers/2.pdf)
2.**Deep graph library: Towards efficient and scalable deep learning on graphs.** ICLR 2019. [paper](https://rlgm.github.io/papers/49.pdf)
3.**Engn: A high-throughput and energy-efficient accelerator for large graph neural networks.** IEEE TC 2021. [paper](https://ieeexplore.ieee.org/abstract/document/9161360)
4.**Hygcn: A GCN accelerator with hybrid architecture.** HPCA 2020. [paper](https://par.nsf.gov/servlets/purl/10188415)
5.**Characterizing and understanding gcns on GPU.** IEEE CAL. [paper](https://ieeexplore.ieee.org/abstract/document/8976117)
6.**Alleviating irregularity in graph analytics acceleration: a hardware/software co-design approach.** MICRO 2019. [paper](https://miglopst.github.io/files/yan_micro2019.pdf)
7.**Accelerating large scale real-time GNN inference using channel pruning.** VLDB Endowment 2021. [paper](https://arxiv.org/pdf/2105.04528.pdf)
8.**G-cos: Gnnaccelerator co-search towards both better accuracy and efficiency.** IEEE ICCAD. [paper]()
<a name="others" />
## Others
1.**How neural networks extrapolate: From feedforward to graph neural networks.** ICLR 2021. [paper](https://openreview.net/forum?id=UH-cmocLJC)
<a name="relations" />
## Relations
1.**Explainability-based backdoor attacks against graph neural networks.** WiseML 2021. [paper](https://dl.acm.org/doi/abs/10.1145/3468218.3469046)
3.**Towards a unified framework for fair and stable graph representation learning.** UAI 2021. [paper](https://proceedings.mlr.press/v161/agarwal21b/agarwal21b.pdf)
4.**Compositional fairness constraints for graph embeddings.** ICML 2019. [paper](http://proceedings.mlr.press/v97/bose19a/bose19a.pdf)
5.**Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information.** WSDM 2021. [paper](https://dl.acm.org/doi/pdf/10.1145/3437963.3441752)
8.**Defensevgae: Defending against adversarial attacks on graph data via a variational graph autoencoder.** Arxiv 2020. [paper](https://arxiv.org/pdf/2006.08900.pdf)
9.**Robust graph convolutional networks against adversarial attacks.** KDD 2019. [paper](https://dl.acm.org/doi/abs/10.1145/3292500.3330851)
10.**Transferring robustness for graph neural network against poisoning attacks.** WSDM 2020. [paper](https://dl.acm.org/doi/abs/10.1145/3336191.3371851)
11.**Extract the knowledge of graph neural networks and go beyond it: An effective knowledge distillation framework.** WWW 2021. [paper](https://dl.acm.org/doi/abs/10.1145/3442381.3450068)
12.**Privacy-preserving representation learning on graphs: A mutual information perspective.** KDD 2021. [paper](https://dl.acm.org/doi/abs/10.1145/3447548.3467273)
13.**Topological uncertainty: Monitoring trained neural networks through persistence of activation graphs.** IJCAI 2021. [paper](https://www.ijcai.org/proceedings/2021/0367.pdf)
If you need more details, please visit the [Survey on Trustworthy GNNs](https://arxiv.org/abs/2205.07424).