Initial commit

This commit is contained in:
Aladdin Persson
2021-01-30 21:49:15 +01:00
commit 65b8c80495
432 changed files with 1290844 additions and 0 deletions

12
.github/FUNDING.yml vendored Normal file
View File

@@ -0,0 +1,12 @@
# These are supported funding model platforms
github: # Replace with up to 4 GitHub Sponsors-enabled usernames e.g., [user1, user2]
patreon: aladdinpersson # Replace with a single Patreon username
open_collective: # Replace with a single Open Collective username
ko_fi: # Replace with a single Ko-fi username
tidelift: # Replace with a single Tidelift platform-name/package-name e.g., npm/babel
community_bridge: # Replace with a single Community Bridge project-name e.g., cloud-foundry
liberapay: # Replace with a single Liberapay username
issuehunt: # Replace with a single IssueHunt username
otechie: # Replace with a single Otechie username
custom: # Replace with up to 4 custom sponsorship URLs e.g., ['link1', 'link2']

3
.gitignore vendored Normal file
View File

@@ -0,0 +1,3 @@
.idea/
ML/Pytorch/more_advanced/image_captioning/flickr8k/
ML/algorithms/svm/__pycache__/utils.cpython-38.pyc

33
.travis.yml Normal file
View File

@@ -0,0 +1,33 @@
language: python
# Default Python version
python: 3.8
# Install ruby to get gem command
before_install:
- sudo apt-add-repository -y ppa:brightbox/ruby-ng
- sudo apt-get -y update
- sudo apt-get -y install ruby-full
install:
- pip install torch
- pip install codecov==2.0.15
- pip install pytest-cov==2.7.1
#before_install:
# - cd Algorithm_tests/sorting_tests
# Install awesome_bot for README.md broken link checking
before_script:
- gem install awesome_bot
script:
- awesome_bot README.md --allow-dupe --allow-redirect
#- flake8 --max-line-length=88
- pytest --cov=investpy ML_tests/
#- python ML_tests/LinearRegression_tests/LinearRegression_GD.py
#- python ML_tests/LinearRegression_tests/LinearRegression_normal.py
#after_success:
# pass
#- codecov

21
LICENSE.txt Normal file
View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2020 Aladdin Persson
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,23 @@
import pandas as pd
import torch
from torch.utils.data import TensorDataset
from torch.utils.data.dataset import random_split
from math import ceil
def get_data():
train_data = pd.read_csv("new_shiny_train.csv")
y = train_data["target"]
X = train_data.drop(["ID_code", "target"], axis=1)
X_tensor = torch.tensor(X.values, dtype=torch.float32)
y_tensor = torch.tensor(y.values, dtype=torch.float32)
ds = TensorDataset(X_tensor, y_tensor)
train_ds, val_ds = random_split(ds, [int(0.999*len(ds)), ceil(0.001*len(ds))])
test_data = pd.read_csv("new_shiny_test.csv")
test_ids = test_data["ID_code"]
X = test_data.drop(["ID_code"], axis=1)
X_tensor = torch.tensor(X.values, dtype=torch.float32)
y_tensor = torch.tensor(y.values, dtype=torch.float32)
test_ds = TensorDataset(X_tensor, y_tensor)
return train_ds, val_ds, test_ds, test_ids

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,55 @@
import torch
from sklearn import metrics
from tqdm import tqdm
import torch.nn as nn
import torch.optim as optim
from utils import get_predictions
from dataset import get_data
from torch.utils.data import DataLoader
import torch.nn.functional as F
class NN(nn.Module):
def __init__(self, input_size, hidden_dim):
super(NN, self).__init__()
self.bn = nn.BatchNorm1d(input_size)
self.fc1 = nn.Linear(2, hidden_dim)
self.fc2 = nn.Linear(input_size//2*hidden_dim, 1)
def forward(self, x):
N = x.shape[0]
x = self.bn(x)
orig_features = x[:, :200].unsqueeze(2) # (N, 200, 1)
new_features = x[:, 200:].unsqueeze(2) # (N, 200, 1)
x = torch.cat([orig_features, new_features], dim=2) # (N, 200, 2)
x = F.relu(self.fc1(x)).reshape(N, -1) # (N, 200*hidden_dim)
return torch.sigmoid(self.fc2(x)).view(-1)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
model = NN(input_size=400, hidden_dim=100).to(DEVICE)
optimizer = optim.Adam(model.parameters(), lr=2e-3, weight_decay=1e-4)
loss_fn = nn.BCELoss()
train_ds, val_ds, test_ds, test_ids = get_data()
train_loader = DataLoader(train_ds, batch_size=1024, shuffle=True)
val_loader = DataLoader(val_ds, batch_size=1024)
test_loader = DataLoader(test_ds, batch_size=1024)
for epoch in range(20):
probabilities, true = get_predictions(val_loader, model, device=DEVICE)
print(f"VALIDATION ROC: {metrics.roc_auc_score(true, probabilities)}")
for batch_idx, (data, targets) in enumerate(train_loader):
data = data.to(DEVICE)
targets = targets.to(DEVICE)
# forward
scores = model(data)
loss = loss_fn(scores, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
from utils import get_submission
get_submission(model, test_loader, test_ids, DEVICE)

View File

@@ -0,0 +1,39 @@
import pandas as pd
import numpy as np
import torch
def get_predictions(loader, model, device):
model.eval()
saved_preds = []
true_labels = []
with torch.no_grad():
for x,y in loader:
x = x.to(device)
y = y.to(device)
scores = model(x)
saved_preds += scores.tolist()
true_labels += y.tolist()
model.train()
return saved_preds, true_labels
def get_submission(model, loader, test_ids, device):
all_preds = []
model.eval()
with torch.no_grad():
for x,y in loader:
print(x.shape)
x = x.to(device)
score = model(x)
prediction = score.float()
all_preds += prediction.tolist()
model.train()
df = pd.DataFrame({
"ID_code" : test_ids.values,
"target" : np.array(all_preds)
})
df.to_csv("sub.csv", index=False)

View File

@@ -0,0 +1,364 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "electoral-scientist",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "surrounded-albert",
"metadata": {},
"outputs": [],
"source": [
"data = pd.read_csv(\"train.csv\")\n",
"test = pd.read_csv(\"test.csv\")\n",
"test_ids = test[\"PassengerId\"]\n",
"\n",
"def clean(data):\n",
" data = data.drop([\"Ticket\", \"PassengerId\", \"Name\", \"Cabin\"], axis=1)\n",
" \n",
" cols = [\"SibSp\", \"Parch\", \"Fare\", \"Age\"]\n",
" for col in cols:\n",
" data[col].fillna(data[col].median(), inplace=True)\n",
" \n",
" data.Embarked.fillna(\"U\", inplace=True)\n",
" return data\n",
"\n",
"data = clean(data)\n",
"test = clean(test)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "electronic-wyoming",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Survived</th>\n",
" <th>Pclass</th>\n",
" <th>Sex</th>\n",
" <th>Age</th>\n",
" <th>SibSp</th>\n",
" <th>Parch</th>\n",
" <th>Fare</th>\n",
" <th>Embarked</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>male</td>\n",
" <td>22.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>7.2500</td>\n",
" <td>S</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>female</td>\n",
" <td>38.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>71.2833</td>\n",
" <td>C</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>female</td>\n",
" <td>26.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>7.9250</td>\n",
" <td>S</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Survived Pclass Sex Age SibSp Parch Fare Embarked\n",
"0 0 3 male 22.0 1 0 7.2500 S\n",
"1 1 1 female 38.0 1 0 71.2833 C\n",
"2 1 3 female 26.0 0 0 7.9250 S"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head(3)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "legendary-conditions",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['female' 'male']\n",
"['C' 'Q' 'S' 'U']\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Survived</th>\n",
" <th>Pclass</th>\n",
" <th>Sex</th>\n",
" <th>Age</th>\n",
" <th>SibSp</th>\n",
" <th>Parch</th>\n",
" <th>Fare</th>\n",
" <th>Embarked</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>22.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>7.2500</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>38.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>71.2833</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>26.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>7.9250</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>35.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>53.1000</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>35.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>8.0500</td>\n",
" <td>2</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Survived Pclass Sex Age SibSp Parch Fare Embarked\n",
"0 0 3 1 22.0 1 0 7.2500 2\n",
"1 1 1 0 38.0 1 0 71.2833 0\n",
"2 1 3 0 26.0 0 0 7.9250 2\n",
"3 1 1 0 35.0 1 0 53.1000 2\n",
"4 0 3 1 35.0 0 0 8.0500 2"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn import preprocessing\n",
"le = preprocessing.LabelEncoder()\n",
"columns = [\"Sex\", \"Embarked\"]\n",
"\n",
"for col in columns:\n",
" data[col] = le.fit_transform(data[col])\n",
" test[col] = le.transform(test[col])\n",
" print(le.classes_)\n",
" \n",
"data.head(5)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "assumed-screening",
"metadata": {},
"outputs": [],
"source": [
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"y = data[\"Survived\"]\n",
"X = data.drop(\"Survived\", axis=1)\n",
"\n",
"X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "industrial-internship",
"metadata": {},
"outputs": [],
"source": [
"clf = LogisticRegression(random_state=0, max_iter=1000).fit(X_train, y_train)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "fifteen-enemy",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.8888888888888888"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predictions = clf.predict(X_val)\n",
"from sklearn.metrics import accuracy_score\n",
"accuracy_score(y_val, predictions)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "juvenile-anthropology",
"metadata": {},
"outputs": [],
"source": [
"submission_preds = clf.predict(test)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "virgin-settlement",
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame({\"PassengerId\": test_ids.values,\n",
" \"Survived\": submission_preds,\n",
" })"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "tribal-bidding",
"metadata": {},
"outputs": [],
"source": [
"df.to_csv(\"submission.csv\", index=False)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

Binary file not shown.

BIN
ML/PaperReviews/UNET.pdf Normal file

Binary file not shown.

View File

@@ -0,0 +1,216 @@
"""
Training a Pointer Network which is a modified
Seq2Seq with attention network for the task of
sorting arrays.
"""
from torch.utils.data import (
Dataset,
DataLoader,
)
import random
import torch
import torch.nn as nn
import torch.optim as optim
from utils import sort_array, save_checkpoint, load_checkpoint
from torch.utils.tensorboard import SummaryWriter # to print to tensorboard
class SortArray(Dataset):
def __init__(self, batch_size, min_int, max_int, min_size, max_size):
self.batch_size = batch_size
self.min_int = min_int
self.max_int = max_int + 1
self.min_size = min_size
self.max_size = max_size + 1
self.start_tok = torch.tensor([-1]).expand(1, self.batch_size)
def __len__(self):
return 10000 // self.batch_size
def __getitem__(self, index):
size_of_array = torch.randint(
low=self.min_size, high=self.max_size, size=(1, 1)
)
unsorted_arr = torch.rand(size=(size_of_array, self.batch_size)) * (
self.max_int - self.min_int
)
# unsorted_arr = torch.randint(
# low=self.min_int, high=self.max_int, size=(size_of_array, self.batch_size)
# )
sorted_arr, indices = torch.sort(unsorted_arr, dim=0)
return unsorted_arr.float(), torch.cat((self.start_tok, indices), 0)
class Encoder(nn.Module):
def __init__(self, hidden_size, num_layers):
super(Encoder, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.rnn = nn.LSTM(1, hidden_size, num_layers)
def forward(self, x):
embedding = x.unsqueeze(2)
# embedding shape: (seq_length, N, 1)
encoder_states, (hidden, cell) = self.rnn(embedding)
# encoder_states: (seq_length, N, hidden_size)
return encoder_states, hidden, cell
class Decoder(nn.Module):
def __init__(self, hidden_size, num_layers, units=100):
super(Decoder, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.rnn = nn.LSTM(hidden_size + 1, hidden_size, num_layers)
self.energy = nn.Linear(hidden_size * 2, units)
self.fc = nn.Linear(units, 1)
self.softmax = nn.Softmax(dim=0)
self.relu = nn.ReLU()
def forward(self, x, encoder_states, hidden, cell):
sequence_length = encoder_states.shape[0]
batch_size = encoder_states.shape[1]
h_reshaped = hidden.repeat(sequence_length, 1, 1)
energy = self.relu(self.energy(torch.cat((h_reshaped, encoder_states), dim=2)))
energy = self.fc(energy)
# energy: (seq_length, N, 1)
attention = self.softmax(energy)
# attention: (seq_length, N, 1), snk
# encoder_states: (seq_length, N, hidden_size), snl
# we want context_vector: (1, N, hidden_size), i.e knl
context_vector = torch.einsum("snk,snl->knl", attention, encoder_states)
rnn_input = torch.cat([context_vector, x.unsqueeze(0).unsqueeze(2)], dim=2)
# rnn_input: (1, N, hidden_size)
_, (hidden, cell) = self.rnn(rnn_input, (hidden, cell))
return attention.squeeze(2), energy.squeeze(2), hidden, cell
class Seq2Seq(nn.Module):
def __init__(self, encoder, decoder):
super(Seq2Seq, self).__init__()
self.encoder = encoder
self.decoder = decoder
def forward(self, source, target, teacher_force_ratio=0.5):
batch_size = source.shape[1]
target_len = target.shape[0]
outputs = torch.zeros(target_len, batch_size, target_len - 1).to(device)
encoder_states, hidden, cell = self.encoder(source)
# First input will be <SOS> token
x = target[0]
predictions = torch.zeros(target_len, batch_size)
for t in range(1, target_len):
# At every time step use encoder_states and update hidden, cell
attention, energy, hidden, cell = self.decoder(
x, encoder_states, hidden, cell
)
# Store prediction for current time step
outputs[t] = energy.permute(1, 0)
# Get the best word the Decoder predicted (index in the vocabulary)
best_guess = attention.argmax(0)
predictions[t, :] = best_guess
# With probability of teacher_force_ratio we take the actual next word
# otherwise we take the word that the Decoder predicted it to be.
# Teacher Forcing is used so that the model gets used to seeing
# similar inputs at training and testing time, if teacher forcing is 1
# then inputs at test time might be completely different than what the
# network is used to. This was a long comment.
x = target[t] if random.random() < teacher_force_ratio else best_guess
return outputs, predictions[1:, :]
### We're ready to define everything we need for training our Seq2Seq model ###
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
load_model = False
save_model = True
# Training hyperparameters
num_epochs = 1000
learning_rate = 3e-5
batch_size = 32
hidden_size = 1024
num_layers = 1 # Current implementation is only for 1 layered
min_int = 1
max_int = 10
min_size = 2
max_size = 15
# Tensorboard to get nice plots etc
writer = SummaryWriter(f"runs/loss_plot2")
step = 0
encoder_net = Encoder(hidden_size, num_layers).to(device)
decoder_net = Decoder(hidden_size, num_layers).to(device)
model = Seq2Seq(encoder_net, decoder_net).to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()
if load_model:
load_checkpoint(torch.load("my_checkpoint.pth.tar"), model, optimizer)
# following is for testing the network, uncomment this if you want
# to try out a few arrays interactively
# sort_array(encoder_net, decoder_net, device)
dataset = SortArray(batch_size, min_int, max_int, min_size, max_size)
train_loader = DataLoader(dataset, batch_size=1, shuffle=False)
for epoch in range(num_epochs):
print(f"[Epoch {epoch} / {num_epochs}]")
if save_model:
checkpoint = {
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
"steps": step,
}
save_checkpoint(checkpoint)
for batch_idx, (unsorted_arrs, sorted_arrs) in enumerate(train_loader):
inp_data = unsorted_arrs.squeeze(0).to(device)
target = sorted_arrs.squeeze(0).to(device)
# Forward prop
output, prediction = model(inp_data, target)
# Remove output first element (because of how we did the look in Seq2Seq
# starting at t = 1, then reshape so that we obtain (N*seq_len, seq_len)
# and target will be (N*seq_len)
output = output[1:].reshape(-1, output.shape[2])
target = target[1:].reshape(-1)
optimizer.zero_grad()
loss = criterion(output, target)
# Back prop
loss.backward()
# Clip to avoid exploding gradient issues, makes sure grads are
# within a healthy range
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1)
# Gradient descent step
optimizer.step()
# plot to tensorboard
writer.add_scalar("Training loss", loss, global_step=step)
step += 1

View File

@@ -0,0 +1,75 @@
import torch
def ask_user():
print("Write your array as a list [i,j,k..] with arbitrary positive numbers")
array = input("Input q if you want to quit \n")
return array
def sort_array(encoder, decoder, device, arr=None):
"""
A very simple example of use of the model
Input: encoder nn.Module
decoder nn.Module
device
array to sort (optional)
"""
if arr is None:
arr = ask_user()
with torch.no_grad():
while arr != "q":
# Avoid numerical errors by rounding to max_len
arr = eval(arr)
lengths = [
len(str(elem).split(".")[1]) if len(str(elem).split(".")) > 1 else 0
for elem in arr
]
max_len = max(lengths)
source = torch.tensor(arr, dtype=torch.float).to(device).unsqueeze(1)
batch_size = source.shape[1]
target_len = source.shape[0] + 1
outputs = torch.zeros(target_len, batch_size, target_len - 1).to(device)
encoder_states, hidden, cell = encoder(source)
# First input will be <SOS> token
x = torch.tensor([-1], dtype=torch.float).to(device)
predictions = torch.zeros((target_len)).to(device)
for t in range(1, target_len):
# At every time step use encoder_states and update hidden, cell
attention, energy, hidden, cell = decoder(
x, encoder_states, hidden, cell
)
# Store prediction for current time step
outputs[t] = energy.permute(1, 0)
# Get the best word the Decoder predicted (index in the vocabulary)
best_guess = attention.argmax(0)
predictions[t] = best_guess.item()
x = torch.tensor([best_guess.item()], dtype=torch.float).to(device)
output = [
round(source[predictions[1:].long()][i, :].item(), max_len)
for i in range(source.shape[0])
]
print(f"Here's the result: {output}")
arr = ask_user()
def save_checkpoint(state, filename="my_checkpoint.pth.tar"):
print("=> Saving checkpoint")
torch.save(state, filename)
def load_checkpoint(checkpoint, model, optimizer): # , steps):
print("=> Loading checkpoint")
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
# steps = checkpoint['steps']
# return steps

View File

@@ -0,0 +1,45 @@
# Exploring the MNIST dataset with PyTorch
The goal of this small project of mine is to learn different models and then try and see what kind of test accuracies we can get on the MNIST dataset. I checked some popular models (LeNet, VGG, Inception net, ResNet) and likely I will try more out in the future as I learn more network architectures. I used an exponential learning rate decay and data augmentation, in the beginning I was just using every data augmentation other people were using but I learned that using RandomHorizontalFlip when learning to recognize digits might not be so useful (heh). I also used a lambda/weight decay of pretty standard 5e-4. My thinking during training was first that I split into a validationset of about 10000 examples and made sure that it was getting high accuracies on validationset with current hyperparameters. After making sure that it wasn't just overfitting the training set, I changed so that the model used all of the training examples (60000) and then when finished training to about ~99.9% training accuracy I tested on the test set.
## Accuracy
| Model | Number of epochs | Training set acc. | Test set acc. |
| ----------------- | ----------- | ----------------- | ----------- |
| [LeNet](http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf) | 150 | 99.69% | 99.12% |
| [VGG13](https://arxiv.org/abs/1409.1556) | 100 | 99.95% | 99.67% |
| [VGG16](https://arxiv.org/abs/1409.1556) | 100 | 99.92% | 99.68% |
| [GoogLeNet](https://arxiv.org/abs/1409.4842) | 100 | 99.90% | 99.71% |
| [ResNet101](https://arxiv.org/abs/1512.03385) | 100 | 99.90% | 99.68% |
TODO: MobileNet, ResNext, SqueezeNet, .., ?
### Comments and things to improve
I believe LeNet has more potential as it's not really overfitting the training set that well and needs more epochs. I believe that in the original paper by LeCun et. al. (1998) showed that they achieved about 99.1% test accuracy which is similar to my results but we also need to remember the limitations that were back then. I do think training it for a bit longer to make it ~99.8-99.9% on training set would get it up to perhaps 99.2-99.3% test accuracy if we're lucky. So far the other models I think have performed quite well and is close, at least from my understanding, to current state of the art. If you would like to really maximize accuracy you would train an ensemble of models and then average their predictions to achieve better accuracy but I've not done that here as I don't think it's that interesting. This was mostly to learn different network architectures and to then check if they work as intended. If you find anything that I can improve or any mistakes, please tell me what and I'll do my best to fix it!
### How to run
```bash
usage: train.py [-h] [--resume PATH] [--lr LR] [--weight-decay R]
[--momentum R] [--epochs N] [--batch-size N]
[--log-interval N] [--seed S] [--number-workers S]
[--init-padding S] [--create-validationset] [--save-model]
PyTorch MNIST
optional arguments:
--resume PATH Saved model. (ex: PATH = checkpoint/mnist_LeNet.pth.tar)
--batch-size N (ex: --batch-size 64), default is 128.
--epochs N (ex: --epochs 10) default is 100.
--lr LR learning rate (ex: --lr 0.01), default is 0.001.
--momentum M SGD w momentum (ex: --momentum 0.5), default is 0.9.
--seed S random seed (ex: --seed 3), default is 1.
--log-interval N print accuracy ever N mini-batches, ex (--log-interval 50), default 240.
--init-padding S Initial padding on images (ex: --init-padding 5), default is 2 to make 28x28 into 32x32.
--create-validation to create validationset
--save-model to save weights
--weight-decay R What weight decay you want (ex: --weight-decay 1e-4), default 1e-5.
--number-workers S How many num workers you want in PyTorch (ex --number-workers 2), default is 0.
Example of a run is:
python train.py --save-model --resume checkpoint/mnist_LeNet.pth.tar --weight-decay 1e-5 --number-workers 2
```

View File

@@ -0,0 +1,109 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
class Inception(nn.Module):
def __init__(
self, in_channels, out1x1, out3x3reduced, out3x3, out5x5reduced, out5x5, outpool
):
super().__init__()
self.branch_1 = BasicConv2d(in_channels, out1x1, kernel_size=1, stride=1)
self.branch_2 = nn.Sequential(
BasicConv2d(in_channels, out3x3reduced, kernel_size=1),
BasicConv2d(out3x3reduced, out3x3, kernel_size=3, padding=1),
)
# Is in the original googLeNet paper 5x5 conv but in Inception_v2 it has shown to be
# more efficient if you instead do two 3x3 convs which is what I am doing here!
self.branch_3 = nn.Sequential(
BasicConv2d(in_channels, out5x5reduced, kernel_size=1),
BasicConv2d(out5x5reduced, out5x5, kernel_size=3, padding=1),
BasicConv2d(out5x5, out5x5, kernel_size=3, padding=1),
)
self.branch_4 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
BasicConv2d(in_channels, outpool, kernel_size=1),
)
def forward(self, x):
y1 = self.branch_1(x)
y2 = self.branch_2(x)
y3 = self.branch_3(x)
y4 = self.branch_4(x)
return torch.cat([y1, y2, y3, y4], 1)
class GoogLeNet(nn.Module):
def __init__(self, img_channel):
super().__init__()
self.first_layers = nn.Sequential(
BasicConv2d(img_channel, 192, kernel_size=3, padding=1)
)
self._3a = Inception(192, 64, 96, 128, 16, 32, 32)
self._3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self._4a = Inception(480, 192, 96, 208, 16, 48, 64)
self._4b = Inception(512, 160, 112, 224, 24, 64, 64)
self._4c = Inception(512, 128, 128, 256, 24, 64, 64)
self._4d = Inception(512, 112, 144, 288, 32, 64, 64)
self._4e = Inception(528, 256, 160, 320, 32, 128, 128)
self._5a = Inception(832, 256, 160, 320, 32, 128, 128)
self._5b = Inception(832, 384, 192, 384, 48, 128, 128)
self.avgpool = nn.AvgPool2d(kernel_size=8, stride=1)
self.linear = nn.Linear(1024, 10)
def forward(self, x):
out = self.first_layers(x)
out = self._3a(out)
out = self._3b(out)
out = self.maxpool(out)
out = self._4a(out)
out = self._4b(out)
out = self._4c(out)
out = self._4d(out)
out = self._4e(out)
out = self.maxpool(out)
out = self._5a(out)
out = self._5b(out)
out = self.avgpool(out)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
class BasicConv2d(nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return F.relu(x, inplace=True)
def test():
net = GoogLeNet(1)
x = torch.randn(3, 1, 32, 32)
y = net(x)
print(y.size())
# test()

View File

@@ -0,0 +1,4 @@
from networks.vgg import VGG
from networks.lenet import LeNet
from networks.resnet import ResNet, residual_template, ResNet50, ResNet101, ResNet152
from networks.googLeNet import BasicConv2d, Inception, GoogLeNet

View File

@@ -0,0 +1,60 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
class LeNet(nn.Module):
def __init__(self, in_channels, init_weights=True, num_classes=10):
super(LeNet, self).__init__()
self.num_classes = num_classes
if init_weights:
self._initialize_weights()
self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=6, kernel_size=5)
self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
z1 = self.conv1(x) # 6 x 28 x 28
a1 = F.relu(z1) # 6 x 28 x 28
a1 = F.max_pool2d(a1, kernel_size=2, stride=2) # 6 x 14 x 14
z2 = self.conv2(a1) # 16 x 10 x 10
a2 = F.relu(z2) # 16 x 10 x 10
a2 = F.max_pool2d(a2, kernel_size=2, stride=2) # 16 x 5 x 5
flatten_a2 = a2.view(a2.size(0), -1)
z3 = self.fc1(flatten_a2)
a3 = F.relu(z3)
z4 = self.fc2(a3)
a4 = F.relu(z4)
z5 = self.fc3(a4)
return z5
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def test_lenet():
net = LeNet(1)
x = torch.randn(64, 1, 32, 32)
y = net(x)
print(y.size())
test_lenet()

View File

@@ -0,0 +1,151 @@
import torch
import torch.nn as nn
class residual_template(nn.Module):
expansion = 4
def __init__(self, in_channels, out_channels, stride=1, identity_downsample=None):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(
out_channels,
out_channels,
kernel_size=3,
stride=stride,
padding=1,
bias=False,
)
self.bn2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(
out_channels, out_channels * self.expansion, kernel_size=1, bias=False
)
self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.identity_downsample = identity_downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.identity_downsample is not None:
residual = self.identity_downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, residual_template, layers, image_channel, num_classes=10):
self.in_channels = 64
super().__init__()
self.conv1 = nn.Conv2d(
in_channels=image_channel,
out_channels=64,
kernel_size=3,
stride=1,
padding=1,
bias=False,
)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(
residual_template, layers[0], channels=64, stride=1
)
self.layer2 = self._make_layer(
residual_template, layers[1], channels=128, stride=2
)
self.layer3 = self._make_layer(
residual_template, layers[2], channels=256, stride=2
)
self.layer4 = self._make_layer(
residual_template, layers[3], channels=512, stride=2
)
self.avgpool = nn.AvgPool2d(kernel_size=4, stride=1)
self.fc = nn.Linear(512 * residual_template.expansion, num_classes)
# initialize weights for conv layers, batch layers
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, residual_template, num_residuals_blocks, channels, stride):
identity_downsample = None
if stride != 1 or self.in_channels != channels * residual_template.expansion:
identity_downsample = nn.Sequential(
nn.Conv2d(
self.in_channels,
channels * residual_template.expansion,
kernel_size=1,
stride=stride,
bias=False,
),
nn.BatchNorm2d(channels * residual_template.expansion),
)
layers = []
layers.append(
residual_template(self.in_channels, channels, stride, identity_downsample)
)
self.in_channels = channels * residual_template.expansion
for i in range(1, num_residuals_blocks):
layers.append(residual_template(self.in_channels, channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def ResNet50(img_channel):
return ResNet(residual_template, [3, 4, 6, 3], img_channel)
def ResNet101(img_channel):
return ResNet(residual_template, [3, 4, 23, 3], img_channel)
def ResNet152(img_channel):
return ResNet(residual_template, [3, 8, 36, 3], img_channel)
def test():
net = ResNet152(img_channel=1)
y = net(torch.randn(64, 1, 32, 32))
print(y.size())
# test()

View File

@@ -0,0 +1,139 @@
import torch
import torch.nn as nn
VGG_types = {
"VGG11": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"],
"VGG13": [64, 64, "M", 128, 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"],
"VGG16": [
64,
64,
"M",
128,
128,
"M",
256,
256,
256,
"M",
512,
512,
512,
"M",
512,
512,
512,
"M",
],
"VGG19": [
64,
64,
"M",
128,
128,
"M",
256,
256,
256,
256,
"M",
512,
512,
512,
512,
"M",
512,
512,
512,
512,
"M",
],
}
class VGG(nn.Module):
def __init__(
self, vgg_type, in_channels, init_weights=True, batch_norm=True, num_classes=10
):
super().__init__()
self.batch_norm = batch_norm
self.in_channels = in_channels
self.layout = self.create_architecture(VGG_types[vgg_type])
self.fc = nn.Linear(512, num_classes)
# self.fcs = nn.Sequential(
# nn.Linear(512* 1 * 1, 4096),
# nn.ReLU(inplace = False),
# nn.Dropout(),
# nn.Linear(4096, 4096),
# nn.ReLU(inplace = False),
# nn.Dropout(),
# nn.Linear(4096, num_classes),
# )
if init_weights:
self._initialize_weights()
def forward(self, x):
out = self.layout(x)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def create_architecture(self, architecture):
layers = []
for x in architecture:
if type(x) == int:
out_channels = x
conv2d = nn.Conv2d(
self.in_channels, out_channels, kernel_size=3, padding=1
)
if self.batch_norm:
layers += [
conv2d,
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=False),
]
else:
layers += [conv2d, nn.ReLU(inplace=False)]
self.in_channels = out_channels
elif x == "M":
layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
return nn.Sequential(*layers)
def test():
net = VGG("VGG16", 1)
x = torch.randn(64, 1, 32, 32)
y = net(x)
print(y.size())
# test()

View File

@@ -0,0 +1,264 @@
import argparse
import os
import shutil
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader, SubsetRandomSampler
from networks.import_all_networks import *
from utils.import_utils import *
class Train_MNIST(object):
def __init__(self):
self.best_acc = 0
self.in_channels = 1 # 1 because MNIST is grayscale
self.dataset = mnist_data # Class that is imported from utils that imports data
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.dtype = torch.float32
self.args = self.prepare_args()
self.transform_train, self.transform_test = self.prepare_transformations()
if self.args.create_validationset:
(
self.loader_train,
self.loader_validation,
self.loader_test,
) = self.prepare_data()
self.data_check_acc = self.loader_validation
else:
self.loader_train, self.loader_test = self.prepare_data()
self.data_check_acc = self.loader_train
def prepare_args(self):
parser = argparse.ArgumentParser(description="PyTorch MNIST")
parser.add_argument(
"--resume",
default="",
type=str,
metavar="PATH",
help="path to latest checkpoint (default: none)",
)
parser.add_argument(
"--lr",
default=0.001,
type=float,
metavar="LR",
help="initial learning rate",
)
parser.add_argument(
"--weight-decay",
default=1e-5,
type=float,
metavar="R",
help="L2 regularization lambda",
)
parser.add_argument(
"--momentum", default=0.9, type=float, metavar="M", help="SGD with momentum"
)
parser.add_argument(
"--epochs",
type=int,
default=100,
metavar="N",
help="number of epochs to train (default: 100)",
)
parser.add_argument(
"--batch-size",
type=int,
default=128,
metavar="N",
help="input batch size for training (default: 128)",
)
parser.add_argument(
"--log-interval",
type=int,
default=240,
metavar="N",
help="how many batches to wait before logging training status",
)
parser.add_argument(
"--seed", type=int, default=1, metavar="S", help="random seed (default: 1)"
)
parser.add_argument(
"--number-workers",
type=int,
default=0,
metavar="S",
help="number of workers (default: 0)",
)
parser.add_argument(
"--init-padding",
type=int,
default=2,
metavar="S",
help=" If use initial padding or not. (default: 2 because mnist 28x28 to make 32x32)",
)
parser.add_argument(
"--create-validationset",
action="store_true",
default=False,
help="If you want to use a validation set (default: False). Default size = 10%",
)
parser.add_argument(
"--save-model",
action="store_true",
default=False,
help="If you want to save this model(default: False).",
)
args = parser.parse_args()
return args
def prepare_transformations(self):
transform_train = transforms.Compose(
[
transforms.Pad(self.args.init_padding),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
]
)
transform_test = transforms.Compose(
[
transforms.Pad(self.args.init_padding),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
]
)
return transform_train, transform_test
def prepare_data(self, shuffle=True):
data = self.dataset(
shuffle,
self.transform_train,
self.transform_test,
self.args.number_workers,
self.args.create_validationset,
self.args.batch_size,
validation_size=0.1,
random_seed=self.args.seed,
)
if self.args.create_validationset:
loader_train, loader_validation, loader_test = data.main()
return loader_train, loader_validation, loader_test
else:
loader_train, loader_test = data.main()
return loader_train, loader_test
def train(self):
criterion = nn.CrossEntropyLoss()
iter = 0
# vis_plotting = visdom_plotting()
loss_list, batch_list, epoch_list, validation_acc_list, training_acc_list = (
[],
[],
[0],
[0],
[0],
)
for epoch in range(self.args.epochs):
for batch_idx, (x, y) in enumerate(self.loader_train):
self.model.train()
x = x.to(device=self.device, dtype=self.dtype)
y = y.to(device=self.device, dtype=torch.long)
scores = self.model(x)
loss = criterion(scores, y)
loss_list.append(loss.item())
batch_list.append(iter + 1)
iter += 1
if batch_idx % self.args.log_interval == 0:
print(f"Batch {batch_idx}, epoch {epoch}, loss = {loss.item()}")
print()
self.model.eval()
train_acc = check_accuracy(self.data_check_acc, self.model)
# validation_acc = self.check_accuracy(self.data_check_acc)
validation_acc = 0
validation_acc_list.append(validation_acc)
training_acc_list.append(train_acc)
epoch_list.append(epoch + 0.5)
print()
print()
# call to plot in visdom
# vis_plotting.create_plot(loss_list, batch_list, validation_acc_list, epoch_list, training_acc_list)
# save checkpoint
if train_acc > self.best_acc and self.args.save_model:
self.best_acc = train_acc
save_checkpoint(
self.filename,
self.model,
self.optimizer,
self.best_acc,
epoch,
)
self.model.train()
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def choose_network(self):
self.model = LeNet(
in_channels=self.in_channels, init_weights=True, num_classes=10
)
self.filename = "checkpoint/mnist_LeNet.pth.tar"
# self.model = VGG('VGG16', in_channels = self.in_channels)
# self.filename = 'checkpoint/mnist_VGG16.pth.tar'
# self.model = ResNet50(img_channel=1)
# self.filename = 'checkpoint/mnist_ResNet.pth.tar'
# self.model = GoogLeNet(img_channel=1)
# self.filename = 'checkpoint/mnist_GoogLeNet.pth.tar'
self.model = self.model.to(self.device)
def main(self):
if __name__ == "__main__":
self.choose_network()
self.optimizer = optim.SGD(
self.model.parameters(),
lr=self.args.lr,
weight_decay=self.args.weight_decay,
momentum=self.args.momentum,
)
cudnn.benchmark = True
if self.args.resume:
self.model.eval()
(
self.model,
self.optimizer,
self.checkpoint,
self.start_epoch,
self.best_acc,
) = load_model(self.args, self.model, self.optimizer)
else:
load_model(self.args, self.model, self.optimizer)
self.train()
## Mnist
network = Train_MNIST()
Train_MNIST.main(network)

View File

@@ -0,0 +1,2 @@
from utils.mnist_data import mnist_data
from utils.utils import check_accuracy, save_checkpoint, visdom_plotting, load_model

View File

@@ -0,0 +1,94 @@
import numpy as np
import torchvision.datasets as datasets
from torch.utils.data import DataLoader, SubsetRandomSampler
class mnist_data(object):
def __init__(
self,
shuffle,
transform_train,
transform_test,
num_workers=0,
create_validation_set=True,
batch_size=128,
validation_size=0.2,
random_seed=1,
):
self.shuffle = shuffle
self.validation_size = validation_size
self.transform_train = transform_train
self.transform_test = transform_test
self.random_seed = random_seed
self.create_validation_set = create_validation_set
self.batch_size = batch_size
self.num_workers = num_workers
def download_data(self):
mnist_trainset = datasets.MNIST(
root="./data", train=True, download=True, transform=self.transform_train
)
mnist_testset = datasets.MNIST(
root="./data", train=False, download=True, transform=self.transform_test
)
return mnist_trainset, mnist_testset
def create_validationset(self, mnist_trainset):
num_train = len(mnist_trainset)
indices = list(range(num_train))
split = int(self.validation_size * num_train)
if self.shuffle:
np.random.seed(self.random_seed)
np.random.shuffle(indices)
train_idx, valid_idx = indices[split:], indices[:split]
train_sampler = SubsetRandomSampler(train_idx)
validation_sampler = SubsetRandomSampler(valid_idx)
loader_train = DataLoader(
dataset=mnist_trainset,
batch_size=self.batch_size,
sampler=train_sampler,
num_workers=self.num_workers,
)
loader_validation = DataLoader(
dataset=mnist_trainset,
batch_size=self.batch_size,
sampler=validation_sampler,
num_workers=self.num_workers,
)
return loader_train, loader_validation
def main(self):
mnist_trainset, mnist_testset = self.download_data()
if self.create_validation_set:
loader_train, loader_validation = self.create_validationset(mnist_trainset)
loader_test = DataLoader(
dataset=mnist_testset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
)
return loader_train, loader_validation, loader_test
else:
loader_train = DataLoader(
dataset=mnist_trainset,
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers,
)
loader_test = DataLoader(
dataset=mnist_testset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
)
return loader_train, loader_test

View File

@@ -0,0 +1,130 @@
import torch
import visdom
import os
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float32
def save_checkpoint(filename, model, optimizer, train_acc, epoch):
save_state = {
"state_dict": model.state_dict(),
"acc": train_acc,
"epoch": epoch + 1,
"optimizer": optimizer.state_dict(),
}
print()
print("Saving current parameters")
print("___________________________________________________________")
torch.save(save_state, filename)
def check_accuracy(loader, model):
if loader.dataset.train:
print("Checking accuracy on training or validation set")
else:
print("Checking accuracy on test set")
num_correct = 0
num_samples = 0
# model.eval() # set model to evaluation mode
with torch.no_grad():
for x, y in loader:
x = x.to(device=device, dtype=dtype) # move to device, e.g. GPU
y = y.to(device=device, dtype=torch.long)
scores = model(x)
_, preds = scores.max(1)
num_correct += (preds == y).sum()
num_samples += preds.size(0)
acc = (float(num_correct) / num_samples) * 100.0
print("Got %d / %d correct (%.2f)" % (num_correct, num_samples, acc))
return acc
def load_model(args, model, optimizer):
if args.resume:
model.eval()
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
start_epoch = checkpoint["epoch"]
best_acc = checkpoint["acc"]
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
print(
"=> loaded checkpoint '{}' (epoch {})".format(
args.resume, checkpoint["epoch"]
)
)
return model, optimizer, checkpoint, start_epoch, best_acc
else:
print("=> no checkpoint found at '{}'".format(args.resume))
else:
print("No pretrained model. Starting from scratch!")
class visdom_plotting(object):
def __init__(self):
self.viz = visdom.Visdom()
self.cur_batch_win = None
self.cur_batch_win_opts = {
"title": "Epoch Loss Trace",
"xlabel": "Batch Number",
"ylabel": "Loss",
"width": 600,
"height": 400,
}
self.cur_validation_acc = None
self.cur_validation_acc_opts = {
"title": "Validation accuracy",
"xlabel": "Epochs",
"ylabel": "Validation Accuracy",
"width": 600,
"height": 400,
}
self.cur_training_acc = None
self.cur_training_acc_opts = {
"title": "Training accuracy",
"xlabel": "Epochs",
"ylabel": "Train Accuracy",
"width": 600,
"height": 400,
}
def create_plot(
self, loss_list, batch_list, validation_acc_list, epoch_list, training_acc_list
):
if self.viz.check_connection():
self.cur_batch_win = self.viz.line(
torch.FloatTensor(loss_list),
torch.FloatTensor(batch_list),
win=self.cur_batch_win,
name="current_batch_loss",
update=(None if self.cur_batch_win is None else "replace"),
opts=self.cur_batch_win_opts,
)
self.cur_validation_acc = self.viz.line(
torch.FloatTensor(validation_acc_list),
torch.FloatTensor(epoch_list),
win=self.cur_validation_acc,
name="current_validation_accuracy",
update=(None if self.cur_validation_acc is None else "replace"),
opts=self.cur_validation_acc_opts,
)
self.cur_training_acc = self.viz.line(
torch.FloatTensor(training_acc_list),
torch.FloatTensor(epoch_list),
win=self.cur_validation_acc,
name="current_training_accuracy",
update=(None if self.cur_training_acc is None else "replace"),
opts=self.cur_training_acc_opts,
)
#

View File

@@ -0,0 +1,41 @@
# -*- coding: utf-8 -*-
"""
We want go through each word in all emails,
check if the word is an actual english word
by comparing with nltk.corpus words and if it is
then add it to our vocabulary.
"""
import pandas as pd
import nltk
from nltk.corpus import words
vocabulary = {}
data = pd.read_csv("data/emails.csv")
nltk.download("words")
set_words = set(words.words())
def build_vocabulary(curr_email):
idx = len(vocabulary)
for word in curr_email:
if word.lower() not in vocabulary and word.lower() in set_words:
vocabulary[word] = idx
idx += 1
if __name__ == "__main__":
for i in range(data.shape[0]):
curr_email = data.iloc[i, :][0].split()
print(
f"Current email is {i}/{data.shape[0]} and the \
length of vocab is curr {len(vocabulary)}"
)
build_vocabulary(curr_email)
# Write dictionary to vocabulary.txt file
file = open("vocabulary.txt", "w")
file.write(str(vocabulary))
file.close()

View File

@@ -0,0 +1,44 @@
# -*- coding: utf-8 -*-
"""
Having created our vocabulary we now need to create
the dataset X,y which we will create by doing frequency
vector for each email. For example if our vocabulary
has the words
[aardkvark, ..., buy, ... money, .... zulu]
We go through each email and count up how many times each
word was repeated, so for a specific example this might look
like:
[0, ..., 4, ... 2, .... 0]
And perhaps since both "buy" and "money" this email might be
spam
"""
import pandas as pd
import numpy as np
import ast
data = pd.read_csv("data/emails.csv")
file = open("vocabulary.txt", "r")
contents = file.read()
vocabulary = ast.literal_eval(contents)
X = np.zeros((data.shape[0], len(vocabulary)))
y = np.zeros((data.shape[0]))
for i in range(data.shape[0]):
email = data.iloc[i, :][0].split()
for email_word in email:
if email_word.lower() in vocabulary:
X[i, vocabulary[email_word]] += 1
y[i] = data.iloc[i, :][1]
# Save stored numpy arrays
np.save("data/X.npy", X)
np.save("data/y.npy", y)

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,68 @@
"""
Naive Bayes Classifier Implementation from scratch
To run the code structure the code in the following way:
X be size: (num_training_examples, num_features)
y be size: (num_classes, )
Where the classes are 0, 1, 2, etc. Then an example run looks like:
NB = NaiveBayes(X, y)
NB.fit(X)
predictions = NB.predict(X)
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-21 Initial coding
"""
import numpy as np
class NaiveBayes:
def __init__(self, X, y):
self.num_examples, self.num_features = X.shape
self.num_classes = len(np.unique(y))
self.eps = 1e-6
def fit(self, X):
self.classes_mean = {}
self.classes_variance = {}
self.classes_prior = {}
for c in range(self.num_classes):
X_c = X[y == c]
self.classes_mean[str(c)] = np.mean(X_c, axis=0)
self.classes_variance[str(c)] = np.var(X_c, axis=0)
self.classes_prior[str(c)] = X_c.shape[0] / X.shape[0]
def predict(self, X):
probs = np.zeros((self.num_examples, self.num_classes))
for c in range(self.num_classes):
prior = self.classes_prior[str(c)]
probs_c = self.density_function(
X, self.classes_mean[str(c)], self.classes_variance[str(c)]
)
probs[:, c] = probs_c + np.log(prior)
return np.argmax(probs, 1)
def density_function(self, x, mean, sigma):
# Calculate probability from Gaussian density function
const = -self.num_features / 2 * np.log(2 * np.pi) - 0.5 * np.sum(
np.log(sigma + self.eps)
)
probs = 0.5 * np.sum(np.power(x - mean, 2) / (sigma + self.eps), 1)
return const - probs
if __name__ == "__main__":
# For spam emails (Make sure to run build_vocab etc. to have .npy files)
X = np.load("data/X.npy")
y = np.load("data/y.npy")
NB = NaiveBayes(X, y)
NB.fit(X)
y_pred = NB.predict(X)
print(f"Accuracy: {sum(y_pred==y)/X.shape[0]}")

View File

@@ -0,0 +1,19 @@
Niela
Elia
Leneth
Ley
Ira
Bernandel
Gelico
Marti
Ednie
Ozel
Marin
Elithon
Mirce
Elie
Elvar
Domarine
Artha
Audrey
Davyd

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,144 @@
"""
Text generation using a character LSTM, specifically we want to
generate new names as inspiration for those having a baby :)
Although this is for name generation, the code is general in the
way that you can just send in any large text file (shakespear text, etc)
and it will generate it.
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-05-09 Initial coding
"""
import torch
import torch.nn as nn
import string
import random
import sys
import unidecode
# Device configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Get characters from string.printable
all_characters = string.printable
n_characters = len(all_characters)
# Read large text file (Note can be any text file: not limited to just names)
file = unidecode.unidecode(open("data/names.txt").read())
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.embed = nn.Embedding(input_size, hidden_size)
self.lstm = nn.LSTM(hidden_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x, hidden, cell):
out = self.embed(x)
out, (hidden, cell) = self.lstm(out.unsqueeze(1), (hidden, cell))
out = self.fc(out.reshape(out.shape[0], -1))
return out, (hidden, cell)
def init_hidden(self, batch_size):
hidden = torch.zeros(self.num_layers, batch_size, self.hidden_size).to(device)
cell = torch.zeros(self.num_layers, batch_size, self.hidden_size).to(device)
return hidden, cell
class Generator:
def __init__(self):
self.chunk_len = 250
self.num_epochs = 5000
self.batch_size = 1
self.print_every = 50
self.hidden_size = 256
self.num_layers = 2
self.lr = 0.003
def char_tensor(self, string):
tensor = torch.zeros(len(string)).long()
for c in range(len(string)):
tensor[c] = all_characters.index(string[c])
return tensor
def get_random_batch(self):
start_idx = random.randint(0, len(file) - self.chunk_len)
end_idx = start_idx + self.chunk_len + 1
text_str = file[start_idx:end_idx]
text_input = torch.zeros(self.batch_size, self.chunk_len)
text_target = torch.zeros(self.batch_size, self.chunk_len)
for i in range(self.batch_size):
text_input[i, :] = self.char_tensor(text_str[:-1])
text_target[i, :] = self.char_tensor(text_str[1:])
return text_input.long(), text_target.long()
def generate(self, initial_str="A", predict_len=100, temperature=0.85):
hidden, cell = self.rnn.init_hidden(batch_size=self.batch_size)
initial_input = self.char_tensor(initial_str)
predicted = initial_str
for p in range(len(initial_str) - 1):
_, (hidden, cell) = self.rnn(
initial_input[p].view(1).to(device), hidden, cell
)
last_char = initial_input[-1]
for p in range(predict_len):
output, (hidden, cell) = self.rnn(
last_char.view(1).to(device), hidden, cell
)
output_dist = output.data.view(-1).div(temperature).exp()
top_char = torch.multinomial(output_dist, 1)[0]
predicted_char = all_characters[top_char]
predicted += predicted_char
last_char = self.char_tensor(predicted_char)
return predicted
# input_size, hidden_size, num_layers, output_size
def train(self):
self.rnn = RNN(
n_characters, self.hidden_size, self.num_layers, n_characters
).to(device)
optimizer = torch.optim.Adam(self.rnn.parameters(), lr=self.lr)
criterion = nn.CrossEntropyLoss()
writer = SummaryWriter(f"runs/names0") # for tensorboard
print("=> Starting training")
for epoch in range(1, self.num_epochs + 1):
inp, target = self.get_random_batch()
hidden, cell = self.rnn.init_hidden(batch_size=self.batch_size)
self.rnn.zero_grad()
loss = 0
inp = inp.to(device)
target = target.to(device)
for c in range(self.chunk_len):
output, (hidden, cell) = self.rnn(inp[:, c], hidden, cell)
loss += criterion(output, target[:, c])
loss.backward()
optimizer.step()
loss = loss.item() / self.chunk_len
if epoch % self.print_every == 0:
print(f"Loss: {loss}")
print(self.generate())
writer.add_scalar("Training loss", loss, global_step=epoch)
gennames = Generator()
gennames.train()

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

View File

@@ -0,0 +1,31 @@
import cv2
import albumentations as A
import numpy as np
from utils import plot_examples
from PIL import Image
image = Image.open("images/elon.jpeg")
transform = A.Compose(
[
A.Resize(width=1920, height=1080),
A.RandomCrop(width=1280, height=720),
A.Rotate(limit=40, p=0.9, border_mode=cv2.BORDER_CONSTANT),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.1),
A.RGBShift(r_shift_limit=25, g_shift_limit=25, b_shift_limit=25, p=0.9),
A.OneOf([
A.Blur(blur_limit=3, p=0.5),
A.ColorJitter(p=0.5),
], p=1.0),
]
)
images_list = [image]
image = np.array(image)
for i in range(15):
augmentations = transform(image=image)
augmented_img = augmentations["image"]
images_list.append(augmented_img)
plot_examples(images_list)

View File

@@ -0,0 +1,41 @@
import cv2
import albumentations as A
import numpy as np
from utils import plot_examples
from PIL import Image
image = cv2.imread("images/cat.jpg")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
bboxes = [[13, 170, 224, 410]]
# Pascal_voc (x_min, y_min, x_max, y_max), YOLO, COCO
transform = A.Compose(
[
A.Resize(width=1920, height=1080),
A.RandomCrop(width=1280, height=720),
A.Rotate(limit=40, p=0.9, border_mode=cv2.BORDER_CONSTANT),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.1),
A.RGBShift(r_shift_limit=25, g_shift_limit=25, b_shift_limit=25, p=0.9),
A.OneOf([
A.Blur(blur_limit=3, p=0.5),
A.ColorJitter(p=0.5),
], p=1.0),
], bbox_params=A.BboxParams(format="pascal_voc", min_area=2048,
min_visibility=0.3, label_fields=[])
)
images_list = [image]
saved_bboxes = [bboxes[0]]
for i in range(15):
augmentations = transform(image=image, bboxes=bboxes)
augmented_img = augmentations["image"]
if len(augmentations["bboxes"]) == 0:
continue
images_list.append(augmented_img)
saved_bboxes.append(augmentations["bboxes"][0])
plot_examples(images_list, saved_bboxes)

View File

@@ -0,0 +1,62 @@
import torch
import numpy as np
import cv2
from PIL import Image
import torch.nn as nn
import albumentations as A
from albumentations.pytorch import ToTensorV2
from torch.utils.data import Dataset
import os
class ImageFolder(Dataset):
def __init__(self, root_dir, transform=None):
super(ImageFolder, self).__init__()
self.data = []
self.root_dir = root_dir
self.transform = transform
self.class_names = os.listdir(root_dir)
for index, name in enumerate(self.class_names):
files = os.listdir(os.path.join(root_dir, name))
self.data += list(zip(files, [index]*len(files)))
def __len__(self):
return len(self.data)
def __getitem__(self, index):
img_file, label = self.data[index]
root_and_dir = os.path.join(self.root_dir, self.class_names[label])
image = np.array(Image.open(os.path.join(root_and_dir, img_file)))
if self.transform is not None:
augmentations = self.transform(image=image)
image = augmentations["image"]
return image, label
transform = A.Compose(
[
A.Resize(width=1920, height=1080),
A.RandomCrop(width=1280, height=720),
A.Rotate(limit=40, p=0.9, border_mode=cv2.BORDER_CONSTANT),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.1),
A.RGBShift(r_shift_limit=25, g_shift_limit=25, b_shift_limit=25, p=0.9),
A.OneOf([
A.Blur(blur_limit=3, p=0.5),
A.ColorJitter(p=0.5),
], p=1.0),
A.Normalize(
mean=[0, 0, 0],
std=[1, 1, 1],
max_pixel_value=255,
),
ToTensorV2(),
]
)
dataset = ImageFolder(root_dir="cat_dogs", transform=transform)
for x,y in dataset:
print(x.shape)

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 274 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

View File

@@ -0,0 +1,37 @@
import cv2
import albumentations as A
import numpy as np
from utils import plot_examples
from PIL import Image
image = Image.open("images/elon.jpeg")
mask = Image.open("images/mask.jpeg")
mask2 = Image.open("images/second_mask.jpeg")
transform = A.Compose(
[
A.Resize(width=1920, height=1080),
A.RandomCrop(width=1280, height=720),
A.Rotate(limit=40, p=0.9, border_mode=cv2.BORDER_CONSTANT),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.1),
A.RGBShift(r_shift_limit=25, g_shift_limit=25, b_shift_limit=25, p=0.9),
A.OneOf([
A.Blur(blur_limit=3, p=0.5),
A.ColorJitter(p=0.5),
], p=1.0),
]
)
images_list = [image]
image = np.array(image)
mask = np.array(mask) # np.asarray(mask), np.array(mask)
mask2 = np.array(mask2)
for i in range(4):
augmentations = transform(image=image, masks=[mask, mask2])
augmented_img = augmentations["image"]
augmented_masks = augmentations["masks"]
images_list.append(augmented_img)
images_list.append(augmented_masks[0])
images_list.append(augmented_masks[1])
plot_examples(images_list)

View File

@@ -0,0 +1,36 @@
import random
import cv2
from matplotlib import pyplot as plt
import matplotlib.patches as patches
import numpy as np
import albumentations as A
def visualize(image):
plt.figure(figsize=(10, 10))
plt.axis('off')
plt.imshow(image)
plt.show()
def plot_examples(images, bboxes=None):
fig = plt.figure(figsize=(15, 15))
columns = 4
rows = 5
for i in range(1, len(images)):
if bboxes is not None:
img = visualize_bbox(images[i - 1], bboxes[i - 1], class_name="Elon")
else:
img = images[i-1]
fig.add_subplot(rows, columns, i)
plt.imshow(img)
plt.show()
# From https://albumentations.ai/docs/examples/example_bboxes/
def visualize_bbox(img, bbox, class_name, color=(255, 0, 0), thickness=5):
"""Visualizes a single bounding box on the image"""
x_min, y_min, x_max, y_max = map(int, bbox)
cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color, thickness)
return img

View File

@@ -0,0 +1,11 @@
Animal,Label
cat.0.jpg,0
cat.1.jpg,0
cat.2.jpg,0
cat.3.jpg,0
cat.4.jpg,0
cat.5.jpg,0
cat.6.jpg,0
cat.7.jpg,0
dog.0.jpg,1
dog.1.jpg,1
1 Animal Label
2 cat.0.jpg 0
3 cat.1.jpg 0
4 cat.2.jpg 0
5 cat.3.jpg 0
6 cat.4.jpg 0
7 cat.5.jpg 0
8 cat.6.jpg 0
9 cat.7.jpg 0
10 dog.0.jpg 1
11 dog.1.jpg 1

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

View File

@@ -0,0 +1,131 @@
# Imports
import os
from typing import Union
import torch.nn.functional as F # All functions that don't have any parameters
import pandas as pd
import torch
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torchvision
import torchvision.transforms as transforms # Transformations we can perform on our dataset
from pandas import io
# from skimage import io
from torch.utils.data import (
Dataset,
DataLoader,
) # Gives easier dataset managment and creates mini batches
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
# Create Fully Connected Network
class NN(nn.Module):
def __init__(self, input_size, num_classes):
super(NN, self).__init__()
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
class SoloDataset(Dataset):
def __init__(self, csv_file, root_dir, transform=None):
self.annotations = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
def __len__(self):
return len(self.annotations)
def __getitem__(self, index):
x_data = self.annotations.iloc[index, 0:11]
x_data = torch.tensor(x_data)
y_label = torch.tensor(int(self.annotations.iloc[index, 11]))
return (x_data.float(), y_label)
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
num_classes = 26
learning_rate = 1e-3
batch_size = 5
num_epochs = 30
input_size = 11
# Load Data
dataset = SoloDataset(
csv_file="power.csv", root_dir="test123", transform=transforms.ToTensor()
)
train_set, test_set = torch.utils.data.random_split(dataset, [2900, 57])
train_loader = DataLoader(dataset=train_set, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_set, batch_size=batch_size, shuffle=True)
# Model
model = NN(input_size=input_size, num_classes=num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
print(len(train_set))
print(len(test_set))
# Train Network
for epoch in range(num_epochs):
losses = []
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores, targets)
losses.append(loss.item())
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
print(f"Cost at epoch {epoch} is {sum(losses) / len(losses)}")
# Check accuracy on training to see how good our model is
def check_accuracy(loader, model):
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}"
)
model.train()
print("Checking accuracy on Training Set")
check_accuracy(train_loader, model)
print("Checking accuracy on Test Set")
check_accuracy(test_loader, model)

View File

@@ -0,0 +1,130 @@
"""
Example of how to create custom dataset in Pytorch. In this case
we have images of cats and dogs in a separate folder and a csv
file containing the name to the jpg file as well as the target
label (0 for cat, 1 for dog).
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-03 Initial coding
"""
# Imports
import torch
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torchvision.transforms as transforms # Transformations we can perform on our dataset
import torchvision
import os
import pandas as pd
from skimage import io
from torch.utils.data import (
Dataset,
DataLoader,
) # Gives easier dataset managment and creates mini batches
class CatsAndDogsDataset(Dataset):
def __init__(self, csv_file, root_dir, transform=None):
self.annotations = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
def __len__(self):
return len(self.annotations)
def __getitem__(self, index):
img_path = os.path.join(self.root_dir, self.annotations.iloc[index, 0])
image = io.imread(img_path)
y_label = torch.tensor(int(self.annotations.iloc[index, 1]))
if self.transform:
image = self.transform(image)
return (image, y_label)
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
in_channel = 3
num_classes = 2
learning_rate = 1e-3
batch_size = 32
num_epochs = 10
# Load Data
dataset = CatsAndDogsDataset(
csv_file="cats_dogs.csv",
root_dir="cats_dogs_resized",
transform=transforms.ToTensor(),
)
# Dataset is actually a lot larger ~25k images, just took out 10 pictures
# to upload to Github. It's enough to understand the structure and scale
# if you got more images.
train_set, test_set = torch.utils.data.random_split(dataset, [5, 5])
train_loader = DataLoader(dataset=train_set, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_set, batch_size=batch_size, shuffle=True)
# Model
model = torchvision.models.googlenet(pretrained=True)
model.to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train Network
for epoch in range(num_epochs):
losses = []
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores, targets)
losses.append(loss.item())
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
print(f"Cost at epoch {epoch} is {sum(losses)/len(losses)}")
# Check accuracy on training to see how good our model is
def check_accuracy(loader, model):
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}"
)
model.train()
print("Checking accuracy on Training Set")
check_accuracy(train_loader, model)
print("Checking accuracy on Test Set")
check_accuracy(test_loader, model)

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,142 @@
import os # when loading file paths
import pandas as pd # for lookup in annotation file
import spacy # for tokenizer
import torch
from torch.nn.utils.rnn import pad_sequence # pad batch
from torch.utils.data import DataLoader, Dataset
from PIL import Image # Load img
import torchvision.transforms as transforms
# We want to convert text -> numerical values
# 1. We need a Vocabulary mapping each word to a index
# 2. We need to setup a Pytorch dataset to load the data
# 3. Setup padding of every batch (all examples should be
# of same seq_len and setup dataloader)
# Note that loading the image is very easy compared to the text!
# Download with: python -m spacy download en
spacy_eng = spacy.load("en")
class Vocabulary:
def __init__(self, freq_threshold):
self.itos = {0: "<PAD>", 1: "<SOS>", 2: "<EOS>", 3: "<UNK>"}
self.stoi = {"<PAD>": 0, "<SOS>": 1, "<EOS>": 2, "<UNK>": 3}
self.freq_threshold = freq_threshold
def __len__(self):
return len(self.itos)
@staticmethod
def tokenizer_eng(text):
return [tok.text.lower() for tok in spacy_eng.tokenizer(text)]
def build_vocabulary(self, sentence_list):
frequencies = {}
idx = 4
for sentence in sentence_list:
for word in self.tokenizer_eng(sentence):
if word not in frequencies:
frequencies[word] = 1
else:
frequencies[word] += 1
if frequencies[word] == self.freq_threshold:
self.stoi[word] = idx
self.itos[idx] = word
idx += 1
def numericalize(self, text):
tokenized_text = self.tokenizer_eng(text)
return [
self.stoi[token] if token in self.stoi else self.stoi["<UNK>"]
for token in tokenized_text
]
class FlickrDataset(Dataset):
def __init__(self, root_dir, captions_file, transform=None, freq_threshold=5):
self.root_dir = root_dir
self.df = pd.read_csv(captions_file)
self.transform = transform
# Get img, caption columns
self.imgs = self.df["image"]
self.captions = self.df["caption"]
# Initialize vocabulary and build vocab
self.vocab = Vocabulary(freq_threshold)
self.vocab.build_vocabulary(self.captions.tolist())
def __len__(self):
return len(self.df)
def __getitem__(self, index):
caption = self.captions[index]
img_id = self.imgs[index]
img = Image.open(os.path.join(self.root_dir, img_id)).convert("RGB")
if self.transform is not None:
img = self.transform(img)
numericalized_caption = [self.vocab.stoi["<SOS>"]]
numericalized_caption += self.vocab.numericalize(caption)
numericalized_caption.append(self.vocab.stoi["<EOS>"])
return img, torch.tensor(numericalized_caption)
class MyCollate:
def __init__(self, pad_idx):
self.pad_idx = pad_idx
def __call__(self, batch):
imgs = [item[0].unsqueeze(0) for item in batch]
imgs = torch.cat(imgs, dim=0)
targets = [item[1] for item in batch]
targets = pad_sequence(targets, batch_first=False, padding_value=self.pad_idx)
return imgs, targets
def get_loader(
root_folder,
annotation_file,
transform,
batch_size=32,
num_workers=8,
shuffle=True,
pin_memory=True,
):
dataset = FlickrDataset(root_folder, annotation_file, transform=transform)
pad_idx = dataset.vocab.stoi["<PAD>"]
loader = DataLoader(
dataset=dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=shuffle,
pin_memory=pin_memory,
collate_fn=MyCollate(pad_idx=pad_idx),
)
return loader, dataset
if __name__ == "__main__":
transform = transforms.Compose(
[transforms.Resize((224, 224)), transforms.ToTensor(),]
)
loader, dataset = get_loader(
"flickr8k/images/", "flickr8k/captions.txt", transform=transform
)
for idx, (imgs, captions) in enumerate(loader):
print(imgs.shape)
print(captions.shape)

View File

@@ -0,0 +1,125 @@
"""
Example code of a simple bidirectional LSTM on the MNIST dataset.
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-05-09 Initial coding
"""
# Imports
import torch
import torchvision
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torch.nn.functional as F # All functions that don't have any parameters
from torch.utils.data import (
DataLoader,
) # Gives easier dataset managment and creates mini batches
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
import torchvision.transforms as transforms # Transformations we can perform on our dataset
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
input_size = 28
sequence_length = 28
num_layers = 2
hidden_size = 256
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 2
# Create a bidirectional LSTM
class BRNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(BRNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(
input_size, hidden_size, num_layers, batch_first=True, bidirectional=True
)
self.fc = nn.Linear(hidden_size * 2, num_classes)
def forward(self, x):
h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
# Load Data
train_dataset = datasets.MNIST(
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
)
test_dataset = datasets.MNIST(
root="dataset/", train=False, transform=transforms.ToTensor(), download=True
)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
# Initialize network
model = BRNN(input_size, hidden_size, num_layers, num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train Network
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.to(device=device).squeeze(1)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores, targets)
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
if loader.dataset.train:
print("Checking accuracy on training data")
else:
print("Checking accuracy on test data")
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device).squeeze(1)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(
f"Got {num_correct} / {num_samples} with accuracy \
{float(num_correct)/float(num_samples)*100:.2f}"
)
model.train()
check_accuracy(train_loader, model)
check_accuracy(test_loader, model)

View File

@@ -0,0 +1,69 @@
"""
Example code of how to initialize weights for a simple CNN network.
Video explanation: https://youtu.be/xWQ-p_o0Uik
Got any questions leave a comment on youtube :)
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-10 Initial coding
"""
# Imports
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.nn.functional as F # All functions that don't have any parameters
class CNN(nn.Module):
def __init__(self, in_channels, num_classes):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(
in_channels=in_channels,
out_channels=6,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
)
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
self.conv2 = nn.Conv2d(
in_channels=6,
out_channels=16,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
)
self.fc1 = nn.Linear(16 * 7 * 7, num_classes)
self.initialize_weights()
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = x.reshape(x.shape[0], -1)
x = self.fc1(x)
return x
def initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.kaiming_uniform_(m.weight)
nn.init.constant_(m.bias, 0)
if __name__ == "__main__":
model = CNN(in_channels=3, num_classes=10)
for param in model.parameters():
print(param)

View File

@@ -0,0 +1,54 @@
"""
Small code example of how to save and load checkpoint of a model.
This example doesn't perform any training, so it would be quite useless.
In practice you would save the model as you train, and then load before
continuining training at another point.
Video explanation of code & how to save and load model: https://youtu.be/g6kQl_EFn84
Got any questions leave a comment on youtube :)
Coded by Aladdin Persson <aladdin dot person at hotmail dot com>
- 2020-04-07 Initial programming
"""
# Imports
import torch
import torchvision
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torch.nn.functional as F # All functions that don't have any parameters
from torch.utils.data import (
DataLoader,
) # Gives easier dataset managment and creates mini batches
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
import torchvision.transforms as transforms # Transformations we can perform on our dataset
def save_checkpoint(state, filename="my_checkpoint.pth.tar"):
print("=> Saving checkpoint")
torch.save(state, filename)
def load_checkpoint(checkpoint, model, optimizer):
print("=> Loading checkpoint")
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
def main():
# Initialize network
model = torchvision.models.vgg16(pretrained=False)
optimizer = optim.Adam(model.parameters())
checkpoint = {"state_dict": model.state_dict(), "optimizer": optimizer.state_dict()}
# Try save checkpoint
save_checkpoint(checkpoint)
# Try load checkpoint
load_checkpoint(torch.load("my_checkpoint.pth.tar"), model, optimizer)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,107 @@
"""
Example code of how to use a learning rate scheduler simple, in this
case with a (very) small and simple Feedforward Network training on MNIST
dataset with a learning rate scheduler. In this case ReduceLROnPlateau
scheduler is used, but can easily be changed to any of the other schedulers
available.
Video explanation: https://youtu.be/P31hB37g4Ak
Got any questions leave a comment on youtube :)
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-10 Initial programming
"""
# Imports
import torch
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
from torch.utils.data import (
DataLoader,
) # Gives easier dataset managment and creates mini batches
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
import torchvision.transforms as transforms # Transformations we can perform on our dataset
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
num_classes = 10
learning_rate = 0.1
batch_size = 128
num_epochs = 100
# Define a very simple model
model = nn.Sequential(nn.Linear(784, 50), nn.ReLU(), nn.Linear(50, 10)).to(device)
# Load Data
train_dataset = datasets.MNIST(
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Define Scheduler
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, factor=0.1, patience=5, verbose=True
)
# Train Network
for epoch in range(1, num_epochs):
losses = []
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.reshape(data.shape[0], -1)
data = data.to(device=device)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores, targets)
losses.append(loss.item())
# backward
loss.backward()
# gradient descent or adam step
# scheduler.step(loss)
optimizer.step()
optimizer.zero_grad()
mean_loss = sum(losses) / len(losses)
# After each epoch do scheduler.step, note in this scheduler we need to send
# in loss for that epoch!
scheduler.step(mean_loss)
print(f"Cost at epoch {epoch} is {mean_loss}")
# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}"
)
model.train()
check_accuracy(train_loader, model)

View File

@@ -0,0 +1,99 @@
# Imports
import torch
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torch.nn.functional as F # All functions that don't have any parameters
from torch.utils.data import DataLoader # Gives easier dataset managment and creates mini batches
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
import torchvision.transforms as transforms # Transformations we can perform on our dataset
# Simple CNN
class CNN(nn.Module):
def __init__(self, in_channels=1, num_classes=10):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=420, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
self.conv2 = nn.Conv2d(in_channels=420, out_channels=1000, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.fc1 = nn.Linear(1000 * 7 * 7, num_classes)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = x.reshape(x.shape[0], -1)
x = self.fc1(x)
return x
# Set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Hyperparameters
in_channel = 1
num_classes = 10
learning_rate = 0.001
batch_size = 100
num_epochs = 5
# Load Data
train_dataset = datasets.MNIST(root='dataset/', train=True, transform=transforms.ToTensor(), download=True)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.MNIST(root='dataset/', train=False, transform=transforms.ToTensor(), download=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
# Initialize network
model = CNN().to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Necessary for FP16
scaler = torch.cuda.amp.GradScaler()
# Train Network
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# forward
with torch.cuda.amp.autocast():
scores = model(data)
loss = criterion(scores, targets)
# backward
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}')
model.train()
check_accuracy(train_loader, model)
check_accuracy(test_loader, model)

View File

@@ -0,0 +1,123 @@
"""
Shows a small example of how to load a pretrain model (VGG16) from PyTorch,
and modifies this to train on the CIFAR10 dataset. The same method generalizes
well to other datasets, but the modifications to the network may need to be changed.
Video explanation: https://youtu.be/U4bHxEhMGNk
Got any questions leave a comment on youtube :)
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-08 Initial coding
"""
# Imports
import torch
import torchvision
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torch.nn.functional as F # All functions that don't have any parameters
from torch.utils.data import (
DataLoader,
) # Gives easier dataset managment and creates mini batches
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
import torchvision.transforms as transforms # Transformations we can perform on our dataset
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
num_classes = 10
learning_rate = 1e-3
batch_size = 1024
num_epochs = 5
# Simple Identity class that let's input pass without changes
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
# Load pretrain model & modify it
model = torchvision.models.vgg16(pretrained=True)
# If you want to do finetuning then set requires_grad = False
# Remove these two lines if you want to train entire model,
# and only want to load the pretrain weights.
for param in model.parameters():
param.requires_grad = False
model.avgpool = Identity()
model.classifier = nn.Sequential(
nn.Linear(512, 100), nn.ReLU(), nn.Linear(100, num_classes)
)
model.to(device)
# Load Data
train_dataset = datasets.CIFAR10(
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train Network
for epoch in range(num_epochs):
losses = []
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores, targets)
losses.append(loss.item())
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
print(f"Cost at epoch {epoch} is {sum(losses)/len(losses):.5f}")
# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
if loader.dataset.train:
print("Checking accuracy on training data")
else:
print("Checking accuracy on test data")
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}"
)
model.train()
check_accuracy(train_loader, model)

View File

@@ -0,0 +1,41 @@
import torch
import torch.nn as nn
from tqdm import tqdm
from torch.utils.data import TensorDataset, DataLoader
# Create a simple toy dataset example, normally this
# would be doing custom class with __getitem__ etc,
# which we have done in custom dataset tutorials
x = torch.randn((1000, 3, 224, 224))
y = torch.randint(low=0, high=10, size=(1000, 1))
ds = TensorDataset(x, y)
loader = DataLoader(ds, batch_size=8)
model = nn.Sequential(
nn.Conv2d(3, 10, kernel_size=3, padding=1, stride=1),
nn.Flatten(),
nn.Linear(10*224*224, 10),
)
NUM_EPOCHS = 100
for epoch in range(NUM_EPOCHS):
loop = tqdm(loader)
for idx, (x, y) in enumerate(loop):
scores = model(x)
# here we would compute loss, backward, optimizer step etc.
# you know how it goes, but now you have a nice progress bar
# with tqdm
# then at the bottom if you want additional info shown, you can
# add it here, for loss and accuracy you would obviously compute
# but now we just set them to random values
loop.set_description(f"Epoch [{epoch}/{NUM_EPOCHS}]")
loop.set_postfix(loss=torch.rand(1).item(), acc=torch.rand(1).item())
# There you go. Hope it was useful :)

View File

@@ -0,0 +1,172 @@
"""
Example code of a simple RNN, GRU, LSTM on the MNIST dataset.
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-05-09 Initial coding
"""
# Imports
import torch
import torchvision
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torch.nn.functional as F # All functions that don't have any parameters
from torch.utils.data import (
DataLoader,
) # Gives easier dataset managment and creates mini batches
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
import torchvision.transforms as transforms # Transformations we can perform on our dataset
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
input_size = 28
hidden_size = 256
num_layers = 2
num_classes = 10
sequence_length = 28
learning_rate = 0.005
batch_size = 64
num_epochs = 2
# Recurrent neural network (many-to-one)
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size * sequence_length, num_classes)
def forward(self, x):
# Set initial hidden and cell states
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
# Forward propagate LSTM
out, _ = self.rnn(x, h0)
out = out.reshape(out.shape[0], -1)
# Decode the hidden state of the last time step
out = self.fc(out)
return out
# Recurrent neural network with GRU (many-to-one)
class RNN_GRU(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(RNN_GRU, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size * sequence_length, num_classes)
def forward(self, x):
# Set initial hidden and cell states
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
# Forward propagate LSTM
out, _ = self.gru(x, h0)
out = out.reshape(out.shape[0], -1)
# Decode the hidden state of the last time step
out = self.fc(out)
return out
# Recurrent neural network with LSTM (many-to-one)
class RNN_LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(RNN_LSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size * sequence_length, num_classes)
def forward(self, x):
# Set initial hidden and cell states
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
# Forward propagate LSTM
out, _ = self.lstm(
x, (h0, c0)
) # out: tensor of shape (batch_size, seq_length, hidden_size)
out = out.reshape(out.shape[0], -1)
# Decode the hidden state of the last time step
out = self.fc(out)
return out
# Load Data
train_dataset = datasets.MNIST(
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
)
test_dataset = datasets.MNIST(
root="dataset/", train=False, transform=transforms.ToTensor(), download=True
)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
# Initialize network
model = RNN_LSTM(input_size, hidden_size, num_layers, num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train Network
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.to(device=device).squeeze(1)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores, targets)
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
if loader.dataset.train:
print("Checking accuracy on training data")
else:
print("Checking accuracy on test data")
num_correct = 0
num_samples = 0
# Set model to eval
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device).squeeze(1)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(
f"Got {num_correct} / {num_samples} with \
accuracy {float(num_correct)/float(num_samples)*100:.2f}"
)
# Set model back to train
model.train()
check_accuracy(train_loader, model)
check_accuracy(test_loader, model)

View File

@@ -0,0 +1,134 @@
"""
Example code of a simple CNN network training on MNIST dataset.
The code is intended to show how to create a CNN network as well
as how to initialize loss, optimizer, etc. in a simple way to get
training to work with function that checks accuracy as well.
Video explanation: https://youtu.be/wnK3uWv_WkU
Got any questions leave a comment on youtube :)
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-08 Initial coding
"""
# Imports
import torch
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torch.nn.functional as F # All functions that don't have any parameters
from torch.utils.data import (
DataLoader,
) # Gives easier dataset managment and creates mini batches
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
import torchvision.transforms as transforms # Transformations we can perform on our dataset
# Simple CNN
class CNN(nn.Module):
def __init__(self, in_channels=1, num_classes=10):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(
in_channels=1,
out_channels=8,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
)
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
self.conv2 = nn.Conv2d(
in_channels=8,
out_channels=16,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
)
self.fc1 = nn.Linear(16 * 7 * 7, num_classes)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = x.reshape(x.shape[0], -1)
x = self.fc1(x)
return x
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
in_channel = 1
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 5
# Load Data
train_dataset = datasets.MNIST(
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.MNIST(
root="dataset/", train=False, transform=transforms.ToTensor(), download=True
)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
# Initialize network
model = CNN().to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train Network
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores, targets)
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
if loader.dataset.train:
print("Checking accuracy on training data")
else:
print("Checking accuracy on test data")
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}"
)
model.train()
check_accuracy(train_loader, model)
check_accuracy(test_loader, model)

View File

@@ -0,0 +1,120 @@
"""
Working code of a simple Fully Connected (FC) network training on MNIST dataset.
The code is intended to show how to create a FC network as well
as how to initialize loss, optimizer, etc. in a simple way to get
training to work with function that checks accuracy as well.
Video explanation: https://youtu.be/Jy4wM2X21u0
Got any questions leave a comment on youtube :)
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-08 Initial coding
"""
# Imports
import torch
import torchvision
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torch.nn.functional as F # All functions that don't have any parameters
from torch.utils.data import (
DataLoader,
) # Gives easier dataset managment and creates mini batches
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
import torchvision.transforms as transforms # Transformations we can perform on our dataset
# Create Fully Connected Network
class NN(nn.Module):
def __init__(self, input_size, num_classes):
super(NN, self).__init__()
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
input_size = 784
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 1
# Load Data
train_dataset = datasets.MNIST(
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.MNIST(
root="dataset/", train=False, transform=transforms.ToTensor(), download=True
)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
# Initialize network
model = NN(input_size=input_size, num_classes=num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train Network
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# Get to correct shape
data = data.reshape(data.shape[0], -1)
# forward
scores = model(data)
loss = criterion(scores, targets)
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
if loader.dataset.train:
print("Checking accuracy on training data")
else:
print("Checking accuracy on test data")
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
x = x.reshape(x.shape[0], -1)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}"
)
model.train()
check_accuracy(train_loader, model)
check_accuracy(test_loader, model)

View File

@@ -0,0 +1,28 @@
import torch
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torchvision.datasets as datasets
from tqdm import tqdm
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_set = datasets.CIFAR10(root="ds/", transform=transforms.ToTensor(), download=True)
train_loader = DataLoader(dataset=train_set, batch_size=64, shuffle=True)
def get_mean_std(loader):
# var[X] = E[X**2] - E[X]**2
channels_sum, channels_sqrd_sum, num_batches = 0, 0, 0
for data, _ in tqdm(loader):
channels_sum += torch.mean(data, dim=[0, 2, 3])
channels_sqrd_sum += torch.mean(data ** 2, dim=[0, 2, 3])
num_batches += 1
mean = channels_sum / num_batches
std = (channels_sqrd_sum / num_batches - mean ** 2) ** 0.5
return mean, std
mean, std = get_mean_std(train_loader)
print(mean)
print(std)

View File

@@ -0,0 +1,299 @@
"""
Walk through of a lot of different useful Tensor Operations, where we
go through what I think are four main parts in:
1. Initialization of a Tensor
2. Tensor Mathematical Operations and Comparison
3. Tensor Indexing
4. Tensor Reshaping
But also other things such as setting the device (GPU/CPU) and converting
between different types (int, float etc) and how to convert a tensor to an
numpy array and vice-versa.
"""
import torch
# ================================================================= #
# Initializing Tensor #
# ================================================================= #
device = "cuda" if torch.cuda.is_available() else "cpu" # Cuda to run on GPU!
# Initializing a Tensor in this case of shape 2x3 (2 rows, 3 columns)
my_tensor = torch.tensor(
[[1, 2, 3], [4, 5, 6]], dtype=torch.float32, device=device, requires_grad=True
)
# A few tensor attributes
print(
f"Information about tensor: {my_tensor}"
) # Prints data of the tensor, device and grad info
print(
"Type of Tensor {my_tensor.dtype}"
) # Prints dtype of the tensor (torch.float32, etc)
print(
f"Device Tensor is on {my_tensor.device}"
) # Prints cpu/cuda (followed by gpu number)
print(f"Shape of tensor {my_tensor.shape}") # Prints shape, in this case 2x3
print(f"Requires gradient: {my_tensor.requires_grad}") # Prints true/false
# Other common initialization methods (there exists a ton more)
x = torch.empty(size=(3, 3)) # Tensor of shape 3x3 with uninitialized data
x = torch.zeros((3, 3)) # Tensor of shape 3x3 with values of 0
x = torch.rand(
(3, 3)
) # Tensor of shape 3x3 with values from uniform distribution in interval [0,1)
x = torch.ones((3, 3)) # Tensor of shape 3x3 with values of 1
x = torch.eye(5, 5) # Returns Identity Matrix I, (I <-> Eye), matrix of shape 2x3
x = torch.arange(
start=0, end=5, step=1
) # Tensor [0, 1, 2, 3, 4], note, can also do: torch.arange(11)
x = torch.linspace(start=0.1, end=1, steps=10) # x = [0.1, 0.2, ..., 1]
x = torch.empty(size=(1, 5)).normal_(
mean=0, std=1
) # Normally distributed with mean=0, std=1
x = torch.empty(size=(1, 5)).uniform_(
0, 1
) # Values from a uniform distribution low=0, high=1
x = torch.diag(torch.ones(3)) # Diagonal matrix of shape 3x3
# How to make initialized tensors to other types (int, float, double)
# These will work even if you're on CPU or CUDA!
tensor = torch.arange(4) # [0, 1, 2, 3] Initialized as int64 by default
print(f"Converted Boolean: {tensor.bool()}") # Converted to Boolean: 1 if nonzero
print(f"Converted int16 {tensor.short()}") # Converted to int16
print(
f"Converted int64 {tensor.long()}"
) # Converted to int64 (This one is very important, used super often)
print(f"Converted float16 {tensor.half()}") # Converted to float16
print(
f"Converted float32 {tensor.float()}"
) # Converted to float32 (This one is very important, used super often)
print(f"Converted float64 {tensor.double()}") # Converted to float64
# Array to Tensor conversion and vice-versa
import numpy as np
np_array = np.zeros((5, 5))
tensor = torch.from_numpy(np_array)
np_array_again = (
tensor.numpy()
) # np_array_again will be same as np_array (perhaps with numerical round offs)
# =============================================================================== #
# Tensor Math & Comparison Operations #
# =============================================================================== #
x = torch.tensor([1, 2, 3])
y = torch.tensor([9, 8, 7])
# -- Addition --
z1 = torch.empty(3)
torch.add(x, y, out=z1) # This is one way
z2 = torch.add(x, y) # This is another way
z = x + y # This is my preferred way, simple and clean.
# -- Subtraction --
z = x - y # We can do similarly as the preferred way of addition
# -- Division (A bit clunky) --
z = torch.true_divide(x, y) # Will do element wise division if of equal shape
# -- Inplace Operations --
t = torch.zeros(3)
t.add_(x) # Whenever we have operation followed by _ it will mutate the tensor in place
t += x # Also inplace: t = t + x is not inplace, bit confusing.
# -- Exponentiation (Element wise if vector or matrices) --
z = x.pow(2) # z = [1, 4, 9]
z = x ** 2 # z = [1, 4, 9]
# -- Simple Comparison --
z = x > 0 # Returns [True, True, True]
z = x < 0 # Returns [False, False, False]
# -- Matrix Multiplication --
x1 = torch.rand((2, 5))
x2 = torch.rand((5, 3))
x3 = torch.mm(x1, x2) # Matrix multiplication of x1 and x2, out shape: 2x3
x3 = x1.mm(x2) # Similar as line above
# -- Matrix Exponentiation --
matrix_exp = torch.rand(5, 5)
print(
matrix_exp.matrix_power(3)
) # is same as matrix_exp (mm) matrix_exp (mm) matrix_exp
# -- Element wise Multiplication --
z = x * y # z = [9, 16, 21] = [1*9, 2*8, 3*7]
# -- Dot product --
z = torch.dot(x, y) # Dot product, in this case z = 1*9 + 2*8 + 3*7
# -- Batch Matrix Multiplication --
batch = 32
n = 10
m = 20
p = 30
tensor1 = torch.rand((batch, n, m))
tensor2 = torch.rand((batch, m, p))
out_bmm = torch.bmm(tensor1, tensor2) # Will be shape: (b x n x p)
# -- Example of broadcasting --
x1 = torch.rand((5, 5))
x2 = torch.ones((1, 5))
z = (
x1 - x2
) # Shape of z is 5x5: How? The 1x5 vector (x2) is subtracted for each row in the 5x5 (x1)
z = (
x1 ** x2
) # Shape of z is 5x5: How? Broadcasting! Element wise exponentiation for every row
# Other useful tensor operations
sum_x = torch.sum(
x, dim=0
) # Sum of x across dim=0 (which is the only dim in our case), sum_x = 6
values, indices = torch.max(x, dim=0) # Can also do x.max(dim=0)
values, indices = torch.min(x, dim=0) # Can also do x.min(dim=0)
abs_x = torch.abs(x) # Returns x where abs function has been applied to every element
z = torch.argmax(x, dim=0) # Gets index of the maximum value
z = torch.argmin(x, dim=0) # Gets index of the minimum value
mean_x = torch.mean(x.float(), dim=0) # mean requires x to be float
z = torch.eq(x, y) # Element wise comparison, in this case z = [False, False, False]
sorted_y, indices = torch.sort(y, dim=0, descending=False)
z = torch.clamp(x, min=0)
# All values < 0 set to 0 and values > 0 unchanged (this is exactly ReLU function)
# If you want to values over max_val to be clamped, do torch.clamp(x, min=min_val, max=max_val)
x = torch.tensor([1, 0, 1, 1, 1], dtype=torch.bool) # True/False values
z = torch.any(x) # will return True, can also do x.any() instead of torch.any(x)
z = torch.all(
x
) # will return False (since not all are True), can also do x.all() instead of torch.all()
# ============================================================= #
# Tensor Indexing #
# ============================================================= #
batch_size = 10
features = 25
x = torch.rand((batch_size, features))
# Get first examples features
print(x[0].shape) # shape [25], this is same as doing x[0,:]
# Get the first feature for all examples
print(x[:, 0].shape) # shape [10]
# For example: Want to access third example in the batch and the first ten features
print(x[2, 0:10].shape) # shape: [10]
# For example we can use this to, assign certain elements
x[0, 0] = 100
# Fancy Indexing
x = torch.arange(10)
indices = [2, 5, 8]
print(x[indices]) # x[indices] = [2, 5, 8]
x = torch.rand((3, 5))
rows = torch.tensor([1, 0])
cols = torch.tensor([4, 0])
print(x[rows, cols]) # Gets second row fifth column and first row first column
# More advanced indexing
x = torch.arange(10)
print(x[(x < 2) | (x > 8)]) # will be [0, 1, 9]
print(x[x.remainder(2) == 0]) # will be [0, 2, 4, 6, 8]
# Useful operations for indexing
print(
torch.where(x > 5, x, x * 2)
) # gives [0, 2, 4, 6, 8, 10, 6, 7, 8, 9], all values x > 5 yield x, else x*2
x = torch.tensor([0, 0, 1, 2, 2, 3, 4]).unique() # x = [0, 1, 2, 3, 4]
print(
x.ndimension()
) # The number of dimensions, in this case 1. if x.shape is 5x5x5 ndim would be 3
x = torch.arange(10)
print(
x.numel()
) # The number of elements in x (in this case it's trivial because it's just a vector)
# ============================================================= #
# Tensor Reshaping #
# ============================================================= #
x = torch.arange(9)
# Let's say we want to reshape it to be 3x3
x_3x3 = x.view(3, 3)
# We can also do (view and reshape are very similar)
# and the differences are in simple terms (I'm no expert at this),
# is that view acts on contiguous tensors meaning if the
# tensor is stored contiguously in memory or not, whereas
# for reshape it doesn't matter because it will copy the
# tensor to make it contiguously stored, which might come
# with some performance loss.
x_3x3 = x.reshape(3, 3)
# If we for example do:
y = x_3x3.t()
print(
y.is_contiguous()
) # This will return False and if we try to use view now, it won't work!
# y.view(9) would cause an error, reshape however won't
# This is because in memory it was stored [0, 1, 2, ... 8], whereas now it's [0, 3, 6, 1, 4, 7, 2, 5, 8]
# The jump is no longer 1 in memory for one element jump (matrices are stored as a contiguous block, and
# using pointers to construct these matrices). This is a bit complicated and I need to explore this more
# as well, at least you know it's a problem to be cautious of! A solution is to do the following
print(y.contiguous().view(9)) # Calling .contiguous() before view and it works
# Moving on to another operation, let's say we want to add two tensors dimensions togethor
x1 = torch.rand(2, 5)
x2 = torch.rand(2, 5)
print(torch.cat((x1, x2), dim=0).shape) # Shape: 4x5
print(torch.cat((x1, x2), dim=1).shape) # Shape 2x10
# Let's say we want to unroll x1 into one long vector with 10 elements, we can do:
z = x1.view(-1) # And -1 will unroll everything
# If we instead have an additional dimension and we wish to keep those as is we can do:
batch = 64
x = torch.rand((batch, 2, 5))
z = x.view(
batch, -1
) # And z.shape would be 64x10, this is very useful stuff and is used all the time
# Let's say we want to switch x axis so that instead of 64x2x5 we have 64x5x2
# I.e we want dimension 0 to stay, dimension 1 to become dimension 2, dimension 2 to become dimension 1
# Basically you tell permute where you want the new dimensions to be, torch.transpose is a special case
# of permute (why?)
z = x.permute(0, 2, 1)
# Splits x last dimension into chunks of 2 (since 5 is not integer div by 2) the last dimension
# will be smaller, so it will split it into two tensors: 64x2x3 and 64x2x2
z = torch.chunk(x, chunks=2, dim=1)
print(z[0].shape)
print(z[1].shape)
# Let's say we want to add an additional dimension
x = torch.arange(
10
) # Shape is [10], let's say we want to add an additional so we have 1x10
print(x.unsqueeze(0).shape) # 1x10
print(x.unsqueeze(1).shape) # 10x1
# Let's say we have x which is 1x1x10 and we want to remove a dim so we have 1x10
x = torch.arange(10).unsqueeze(0).unsqueeze(1)
# Perhaps unsurprisingly
z = x.squeeze(1) # can also do .squeeze(0) both returns 1x10
# That was some essential Tensor operations, hopefully you found it useful!

View File

@@ -0,0 +1,142 @@
"""
Example code of how to use the TensorBoard in PyTorch.
This code uses a lot of different functions from TensorBoard
and tries to have them all in a compact way, it might not be
super clear exactly what calls does what, for that I recommend
watching the YouTube video.
Video explanation: https://youtu.be/RLqsxWaQdHE
Got any questions leave a comment on youtube :)
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-17 Initial coding
"""
# Imports
import torch
import torchvision
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torch.nn.functional as F # All functions that don't have any parameters
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
import torchvision.transforms as transforms # Transformations we can perform on our dataset
from torch.utils.data import (
DataLoader,
) # Gives easier dataset managment and creates mini batches
from torch.utils.tensorboard import SummaryWriter # to print to tensorboard
# Simple CNN
class CNN(nn.Module):
def __init__(self, in_channels=1, num_classes=10):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(
in_channels=in_channels, out_channels=8, kernel_size=3, stride=1, padding=1
)
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
self.conv2 = nn.Conv2d(
in_channels=8, out_channels=16, kernel_size=3, stride=1, padding=1
)
self.fc1 = nn.Linear(16 * 7 * 7, num_classes)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = x.reshape(x.shape[0], -1)
x = self.fc1(x)
return x
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
in_channels = 1
num_classes = 10
num_epochs = 1
# Load Data
train_dataset = datasets.MNIST(
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
)
# To do hyperparameter search, include more batch_sizes you want to try
# and more learning rates!
batch_sizes = [256]
learning_rates = [0.001]
classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
for batch_size in batch_sizes:
for learning_rate in learning_rates:
step = 0
# Initialize network
model = CNN(in_channels=in_channels, num_classes=num_classes)
model.to(device)
model.train()
criterion = nn.CrossEntropyLoss()
train_loader = DataLoader(
dataset=train_dataset, batch_size=batch_size, shuffle=True
)
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=0.0)
writer = SummaryWriter(
f"runs/MNIST/MiniBatchSize {batch_size} LR {learning_rate}"
)
# Visualize model in TensorBoard
images, _ = next(iter(train_loader))
writer.add_graph(model, images.to(device))
writer.close()
for epoch in range(num_epochs):
losses = []
accuracies = []
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores, targets)
losses.append(loss.item())
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Calculate 'running' training accuracy
features = data.reshape(data.shape[0], -1)
img_grid = torchvision.utils.make_grid(data)
_, predictions = scores.max(1)
num_correct = (predictions == targets).sum()
running_train_acc = float(num_correct) / float(data.shape[0])
accuracies.append(running_train_acc)
# Plot things to tensorboard
class_labels = [classes[label] for label in predictions]
writer.add_image("mnist_images", img_grid)
writer.add_histogram("fc1", model.fc1.weight)
writer.add_scalar("Training loss", loss, global_step=step)
writer.add_scalar(
"Training Accuracy", running_train_acc, global_step=step
)
if batch_idx == 230:
writer.add_embedding(
features,
metadata=class_labels,
label_img=data,
global_step=batch_idx,
)
step += 1
writer.add_hparams(
{"lr": learning_rate, "bsize": batch_size},
{
"accuracy": sum(accuracies) / len(accuracies),
"loss": sum(losses) / len(losses),
},
)

View File

@@ -0,0 +1,155 @@
"""
Shows a small example of how to use transformations (perhaps unecessarily many)
on CIFAR10 dataset and training on a small CNN toy network.
Video explanation: https://youtu.be/Zvd276j9sZ8
Got any questions leave a comment I'm pretty good at responding on youtube
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-09 Initial coding
"""
# Imports
import torch
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torch.nn.functional as F # All functions that don't have any parameters
from torch.utils.data import (
DataLoader,
) # Gives easier dataset managment and creates mini batches
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
import torchvision.transforms as transforms # Transformations we can perform on our dataset
# Simple CNN
class CNN(nn.Module):
def __init__(self, in_channels, num_classes):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(
in_channels=in_channels,
out_channels=8,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
)
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
self.conv2 = nn.Conv2d(
in_channels=8,
out_channels=16,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
)
self.fc1 = nn.Linear(16 * 8 * 8, num_classes)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = x.reshape(x.shape[0], -1)
x = self.fc1(x)
return x
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
learning_rate = 1e-4
batch_size = 64
num_epochs = 5
# Load pretrain model & modify it
model = CNN(in_channels=3, num_classes=10)
model.classifier = nn.Sequential(nn.Linear(512, 100), nn.ReLU(), nn.Linear(100, 10))
model.to(device)
# Load Data
my_transforms = transforms.Compose(
[ # Compose makes it possible to have many transforms
transforms.Resize((36, 36)), # Resizes (32,32) to (36,36)
transforms.RandomCrop((32, 32)), # Takes a random (32,32) crop
transforms.ColorJitter(brightness=0.5), # Change brightness of image
transforms.RandomRotation(
degrees=45
), # Perhaps a random rotation from -45 to 45 degrees
transforms.RandomHorizontalFlip(
p=0.5
), # Flips the image horizontally with probability 0.5
transforms.RandomVerticalFlip(
p=0.05
), # Flips image vertically with probability 0.05
transforms.RandomGrayscale(p=0.2), # Converts to grayscale with probability 0.2
transforms.ToTensor(), # Finally converts PIL image to tensor so we can train w. pytorch
transforms.Normalize(
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]
), # Note: these values aren't optimal
]
)
train_dataset = datasets.CIFAR10(
root="dataset/", train=True, transform=my_transforms, download=True
)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train Network
for epoch in range(num_epochs):
losses = []
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores, targets)
losses.append(loss.item())
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
print(f"Cost at epoch {epoch} is {sum(losses)/len(losses):.5f}")
# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
if loader.dataset.train:
print("Checking accuracy on training data")
else:
print("Checking accuracy on test data")
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}"
)
model.train()
check_accuracy(train_loader, model)

View File

@@ -0,0 +1,15 @@
import random, torch, os, numpy as np
def seed_everything(seed=42):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
seed_everything()
# Do training etc after running seed_everything

View File

@@ -0,0 +1,67 @@
"""
An implementation of LeNet CNN architecture.
Video explanation: https://youtu.be/fcOW-Zyb5Bo
Got any questions leave a comment on youtube :)
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-05 Initial coding
"""
import torch
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.relu = nn.ReLU()
self.pool = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2))
self.conv1 = nn.Conv2d(
in_channels=1,
out_channels=6,
kernel_size=(5, 5),
stride=(1, 1),
padding=(0, 0),
)
self.conv2 = nn.Conv2d(
in_channels=6,
out_channels=16,
kernel_size=(5, 5),
stride=(1, 1),
padding=(0, 0),
)
self.conv3 = nn.Conv2d(
in_channels=16,
out_channels=120,
kernel_size=(5, 5),
stride=(1, 1),
padding=(0, 0),
)
self.linear1 = nn.Linear(120, 84)
self.linear2 = nn.Linear(84, 10)
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.pool(x)
x = self.relu(self.conv2(x))
x = self.pool(x)
x = self.relu(
self.conv3(x)
) # num_examples x 120 x 1 x 1 --> num_examples x 120
x = x.reshape(x.shape[0], -1)
x = self.relu(self.linear1(x))
x = self.linear2(x)
return x
def test_lenet():
x = torch.randn(64, 1, 32, 32)
model = LeNet()
return model(x)
if __name__ == "__main__":
out = test_lenet()
print(out.shape)

View File

@@ -0,0 +1,166 @@
"""
An implementation of GoogLeNet / InceptionNet from scratch.
Video explanation: https://youtu.be/uQc4Fs7yx5I
Got any questions leave a comment on youtube :)
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-07 Initial coding
"""
# Imports
import torch
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
class GoogLeNet(nn.Module):
def __init__(self, aux_logits=True, num_classes=1000):
super(GoogLeNet, self).__init__()
assert aux_logits == True or aux_logits == False
self.aux_logits = aux_logits
# Write in_channels, etc, all explicit in self.conv1, rest will write to
# make everything as compact as possible, kernel_size=3 instead of (3,3)
self.conv1 = conv_block(
in_channels=3,
out_channels=64,
kernel_size=(7, 7),
stride=(2, 2),
padding=(3, 3),
)
self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv2 = conv_block(64, 192, kernel_size=3, stride=1, padding=1)
self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# In this order: in_channels, out_1x1, red_3x3, out_3x3, red_5x5, out_5x5, out_1x1pool
self.inception3a = Inception_block(192, 64, 96, 128, 16, 32, 32)
self.inception3b = Inception_block(256, 128, 128, 192, 32, 96, 64)
self.maxpool3 = nn.MaxPool2d(kernel_size=(3, 3), stride=2, padding=1)
self.inception4a = Inception_block(480, 192, 96, 208, 16, 48, 64)
self.inception4b = Inception_block(512, 160, 112, 224, 24, 64, 64)
self.inception4c = Inception_block(512, 128, 128, 256, 24, 64, 64)
self.inception4d = Inception_block(512, 112, 144, 288, 32, 64, 64)
self.inception4e = Inception_block(528, 256, 160, 320, 32, 128, 128)
self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.inception5a = Inception_block(832, 256, 160, 320, 32, 128, 128)
self.inception5b = Inception_block(832, 384, 192, 384, 48, 128, 128)
self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1)
self.dropout = nn.Dropout(p=0.4)
self.fc1 = nn.Linear(1024, 1000)
if self.aux_logits:
self.aux1 = InceptionAux(512, num_classes)
self.aux2 = InceptionAux(528, num_classes)
else:
self.aux1 = self.aux2 = None
def forward(self, x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
# x = self.conv3(x)
x = self.maxpool2(x)
x = self.inception3a(x)
x = self.inception3b(x)
x = self.maxpool3(x)
x = self.inception4a(x)
# Auxiliary Softmax classifier 1
if self.aux_logits and self.training:
aux1 = self.aux1(x)
x = self.inception4b(x)
x = self.inception4c(x)
x = self.inception4d(x)
# Auxiliary Softmax classifier 2
if self.aux_logits and self.training:
aux2 = self.aux2(x)
x = self.inception4e(x)
x = self.maxpool4(x)
x = self.inception5a(x)
x = self.inception5b(x)
x = self.avgpool(x)
x = x.reshape(x.shape[0], -1)
x = self.dropout(x)
x = self.fc1(x)
if self.aux_logits and self.training:
return aux1, aux2, x
else:
return x
class Inception_block(nn.Module):
def __init__(
self, in_channels, out_1x1, red_3x3, out_3x3, red_5x5, out_5x5, out_1x1pool
):
super(Inception_block, self).__init__()
self.branch1 = conv_block(in_channels, out_1x1, kernel_size=(1, 1))
self.branch2 = nn.Sequential(
conv_block(in_channels, red_3x3, kernel_size=(1, 1)),
conv_block(red_3x3, out_3x3, kernel_size=(3, 3), padding=(1, 1)),
)
self.branch3 = nn.Sequential(
conv_block(in_channels, red_5x5, kernel_size=(1, 1)),
conv_block(red_5x5, out_5x5, kernel_size=(5, 5), padding=(2, 2)),
)
self.branch4 = nn.Sequential(
nn.MaxPool2d(kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
conv_block(in_channels, out_1x1pool, kernel_size=(1, 1)),
)
def forward(self, x):
return torch.cat(
[self.branch1(x), self.branch2(x), self.branch3(x), self.branch4(x)], 1
)
class InceptionAux(nn.Module):
def __init__(self, in_channels, num_classes):
super(InceptionAux, self).__init__()
self.relu = nn.ReLU()
self.dropout = nn.Dropout(p=0.7)
self.pool = nn.AvgPool2d(kernel_size=5, stride=3)
self.conv = conv_block(in_channels, 128, kernel_size=1)
self.fc1 = nn.Linear(2048, 1024)
self.fc2 = nn.Linear(1024, num_classes)
def forward(self, x):
x = self.pool(x)
x = self.conv(x)
x = x.reshape(x.shape[0], -1)
x = self.relu(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return x
class conv_block(nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super(conv_block, self).__init__()
self.relu = nn.ReLU()
self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
self.batchnorm = nn.BatchNorm2d(out_channels)
def forward(self, x):
return self.relu(self.batchnorm(self.conv(x)))
if __name__ == "__main__":
# N = 3 (Mini batch size)
x = torch.randn(3, 3, 224, 224)
model = GoogLeNet(aux_logits=True, num_classes=1000)
print(model(x)[2].shape)

Some files were not shown because too many files have changed in this diff Show More