import os from PIL import Image from torch.utils.data import Dataset import numpy as np class CarvanaDataset(Dataset): def __init__(self, image_dir, mask_dir, transform=None): self.image_dir = image_dir self.mask_dir = mask_dir self.transform = transform self.images = os.listdir(image_dir) def __len__(self): return len(self.images) def __getitem__(self, index): img_path = os.path.join(self.image_dir, self.images[index]) mask_path = os.path.join(self.mask_dir, self.images[index].replace(".jpg", "_mask.gif")) image = np.array(Image.open(img_path).convert("RGB")) mask = np.array(Image.open(mask_path).convert("L"), dtype=np.float32) mask[mask == 255.0] = 1.0 if self.transform is not None: augmentations = self.transform(image=image, mask=mask) image = augmentations["image"] mask = augmentations["mask"] return image, mask