import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import tensorflow_datasets as tfds (ds_train, ds_test), ds_info = tfds.load( "cifar10", split=["train", "test"], shuffle_files=True, as_supervised=True, # will return tuple (img, label) otherwise dict with_info=True, # able to get info about dataset ) def normalize_img(image, label): """Normalizes images""" return tf.cast(image, tf.float32) / 255.0, label AUTOTUNE = tf.data.experimental.AUTOTUNE BATCH_SIZE = 32 def augment(image, label): new_height = new_width = 32 image = tf.image.resize(image, (new_height, new_width)) if tf.random.uniform((), minval=0, maxval=1) < 0.1: image = tf.tile(tf.image.rgb_to_grayscale(image), [1, 1, 3]) image = tf.image.random_brightness(image, max_delta=0.1) image = tf.image.random_contrast(image, lower=0.1, upper=0.2) # a left upside down flipped is still a dog ;) image = tf.image.random_flip_left_right(image) # 50% # image = tf.image.random_flip_up_down(image) #%50% return image, label # Setup for train dataset ds_train = ds_train.map(normalize_img, num_parallel_calls=AUTOTUNE) ds_train = ds_train.cache() ds_train = ds_train.shuffle(ds_info.splits["train"].num_examples) # ds_train = ds_train.map(augment) ds_train = ds_train.batch(BATCH_SIZE) ds_train = ds_train.prefetch(AUTOTUNE) # Setup for test Dataset ds_test = ds_train.map(normalize_img, num_parallel_calls=AUTOTUNE) ds_test = ds_train.batch(BATCH_SIZE) ds_test = ds_train.prefetch(AUTOTUNE) # TF >= 2.3.0 data_augmentation = keras.Sequential( [ layers.experimental.preprocessing.Resizing(height=32, width=32,), layers.experimental.preprocessing.RandomFlip(mode="horizontal"), layers.experimental.preprocessing.RandomContrast(factor=0.1,), ] ) model = keras.Sequential( [ keras.Input((32, 32, 3)), data_augmentation, layers.Conv2D(4, 3, padding="same", activation="relu"), layers.Conv2D(8, 3, padding="same", activation="relu"), layers.MaxPooling2D(), layers.Conv2D(16, 3, padding="same", activation="relu"), layers.Flatten(), layers.Dense(64, activation="relu"), layers.Dense(10), ] ) model.compile( optimizer=keras.optimizers.Adam(3e-4), loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=["accuracy"], ) model.fit(ds_train, epochs=5, verbose=2) model.evaluate(ds_test)