Files
Aladdin Persson 74597aa8fd updated progan
2021-03-24 13:01:45 +01:00

191 lines
5.8 KiB
Python

""" Training of ProGAN using WGAN-GP loss"""
import torch
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from utils import (
gradient_penalty,
plot_to_tensorboard,
save_checkpoint,
load_checkpoint,
generate_examples,
)
from model import Discriminator, Generator
from math import log2
from tqdm import tqdm
import config
torch.backends.cudnn.benchmarks = True
def get_loader(image_size):
transform = transforms.Compose(
[
transforms.Resize((image_size, image_size)),
transforms.ToTensor(),
transforms.RandomHorizontalFlip(p=0.5),
transforms.Normalize(
[0.5 for _ in range(config.CHANNELS_IMG)],
[0.5 for _ in range(config.CHANNELS_IMG)],
),
]
)
batch_size = config.BATCH_SIZES[int(log2(image_size / 4))]
dataset = datasets.ImageFolder(root=config.DATASET, transform=transform)
loader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
num_workers=config.NUM_WORKERS,
pin_memory=True,
)
return loader, dataset
def train_fn(
critic,
gen,
loader,
dataset,
step,
alpha,
opt_critic,
opt_gen,
tensorboard_step,
writer,
scaler_gen,
scaler_critic,
):
loop = tqdm(loader, leave=True)
for batch_idx, (real, _) in enumerate(loop):
real = real.to(config.DEVICE)
cur_batch_size = real.shape[0]
# Train Critic: max E[critic(real)] - E[critic(fake)] <-> min -E[critic(real)] + E[critic(fake)]
# which is equivalent to minimizing the negative of the expression
noise = torch.randn(cur_batch_size, config.Z_DIM, 1, 1).to(config.DEVICE)
with torch.cuda.amp.autocast():
fake = gen(noise, alpha, step)
critic_real = critic(real, alpha, step)
critic_fake = critic(fake.detach(), alpha, step)
gp = gradient_penalty(critic, real, fake, alpha, step, device=config.DEVICE)
loss_critic = (
-(torch.mean(critic_real) - torch.mean(critic_fake))
+ config.LAMBDA_GP * gp
+ (0.001 * torch.mean(critic_real ** 2))
)
opt_critic.zero_grad()
scaler_critic.scale(loss_critic).backward()
scaler_critic.step(opt_critic)
scaler_critic.update()
# Train Generator: max E[critic(gen_fake)] <-> min -E[critic(gen_fake)]
with torch.cuda.amp.autocast():
gen_fake = critic(fake, alpha, step)
loss_gen = -torch.mean(gen_fake)
opt_gen.zero_grad()
scaler_gen.scale(loss_gen).backward()
scaler_gen.step(opt_gen)
scaler_gen.update()
# Update alpha and ensure less than 1
alpha += cur_batch_size / (
(config.PROGRESSIVE_EPOCHS[step] * 0.5) * len(dataset)
)
alpha = min(alpha, 1)
if batch_idx % 500 == 0:
with torch.no_grad():
fixed_fakes = gen(config.FIXED_NOISE, alpha, step) * 0.5 + 0.5
plot_to_tensorboard(
writer,
loss_critic.item(),
loss_gen.item(),
real.detach(),
fixed_fakes.detach(),
tensorboard_step,
)
tensorboard_step += 1
loop.set_postfix(
gp=gp.item(),
loss_critic=loss_critic.item(),
)
return tensorboard_step, alpha
def main():
# initialize gen and disc, note: discriminator should be called critic,
# according to WGAN paper (since it no longer outputs between [0, 1])
# but really who cares..
gen = Generator(
config.Z_DIM, config.IN_CHANNELS, img_channels=config.CHANNELS_IMG
).to(config.DEVICE)
critic = Discriminator(
config.Z_DIM, config.IN_CHANNELS, img_channels=config.CHANNELS_IMG
).to(config.DEVICE)
# initialize optimizers and scalers for FP16 training
opt_gen = optim.Adam(gen.parameters(), lr=config.LEARNING_RATE, betas=(0.0, 0.99))
opt_critic = optim.Adam(
critic.parameters(), lr=config.LEARNING_RATE, betas=(0.0, 0.99)
)
scaler_critic = torch.cuda.amp.GradScaler()
scaler_gen = torch.cuda.amp.GradScaler()
# for tensorboard plotting
writer = SummaryWriter(f"logs/gan1")
if config.LOAD_MODEL:
load_checkpoint(
config.CHECKPOINT_GEN, gen, opt_gen, config.LEARNING_RATE,
)
load_checkpoint(
config.CHECKPOINT_CRITIC, critic, opt_critic, config.LEARNING_RATE,
)
gen.train()
critic.train()
tensorboard_step = 0
# start at step that corresponds to img size that we set in config
step = int(log2(config.START_TRAIN_AT_IMG_SIZE / 4))
for num_epochs in config.PROGRESSIVE_EPOCHS[step:]:
alpha = 1e-5 # start with very low alpha
loader, dataset = get_loader(4 * 2 ** step) # 4->0, 8->1, 16->2, 32->3, 64 -> 4
print(f"Current image size: {4 * 2 ** step}")
for epoch in range(num_epochs):
print(f"Epoch [{epoch+1}/{num_epochs}]")
tensorboard_step, alpha = train_fn(
critic,
gen,
loader,
dataset,
step,
alpha,
opt_critic,
opt_gen,
tensorboard_step,
writer,
scaler_gen,
scaler_critic,
)
if config.SAVE_MODEL:
save_checkpoint(gen, opt_gen, filename=config.CHECKPOINT_GEN)
save_checkpoint(critic, opt_critic, filename=config.CHECKPOINT_CRITIC)
step += 1 # progress to the next img size
if __name__ == "__main__":
main()