mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-20 13:50:41 +00:00
41 lines
1.2 KiB
Python
41 lines
1.2 KiB
Python
import cv2
|
|
import albumentations as A
|
|
import numpy as np
|
|
from utils import plot_examples
|
|
from PIL import Image
|
|
|
|
image = cv2.imread("images/cat.jpg")
|
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
bboxes = [[13, 170, 224, 410]]
|
|
|
|
# Pascal_voc (x_min, y_min, x_max, y_max), YOLO, COCO
|
|
|
|
transform = A.Compose(
|
|
[
|
|
A.Resize(width=1920, height=1080),
|
|
A.RandomCrop(width=1280, height=720),
|
|
A.Rotate(limit=40, p=0.9, border_mode=cv2.BORDER_CONSTANT),
|
|
A.HorizontalFlip(p=0.5),
|
|
A.VerticalFlip(p=0.1),
|
|
A.RGBShift(r_shift_limit=25, g_shift_limit=25, b_shift_limit=25, p=0.9),
|
|
A.OneOf([
|
|
A.Blur(blur_limit=3, p=0.5),
|
|
A.ColorJitter(p=0.5),
|
|
], p=1.0),
|
|
], bbox_params=A.BboxParams(format="pascal_voc", min_area=2048,
|
|
min_visibility=0.3, label_fields=[])
|
|
)
|
|
|
|
images_list = [image]
|
|
saved_bboxes = [bboxes[0]]
|
|
for i in range(15):
|
|
augmentations = transform(image=image, bboxes=bboxes)
|
|
augmented_img = augmentations["image"]
|
|
|
|
if len(augmentations["bboxes"]) == 0:
|
|
continue
|
|
|
|
images_list.append(augmented_img)
|
|
saved_bboxes.append(augmentations["bboxes"][0])
|
|
|
|
plot_examples(images_list, saved_bboxes) |