2026-02-11 22:29:04 -05:00
2026-02-11 22:13:22 -05:00
2026-02-11 22:29:04 -05:00
2026-01-22 17:47:28 -05:00
2026-01-18 17:50:47 -05:00
2025-12-26 13:19:54 -05:00
2026-02-10 21:26:35 -05:00

LLM-Guided SQL Evidence Extraction

This project implements a lightweight LLM-assisted pipeline for discovering and extracting evidentiary artifacts from SQLite databases commonly found in mobile device extractions.

The system separates discovery and extraction to reduce search space, avoid hallucinated SQL, and preserve explainability.

Features

  • LLM-guided SQL planning with deterministic execution
  • Discovery to extraction workflow
  • Fixed evidence types: EMAIL, PHONE, USERNAME, PERSON_NAME
  • Safe SQLite execution with REGEXP support
  • UNION / UNION ALLaware column extraction
  • Transparent, inspectable state machine

Setup

pip install langchain langgraph python-dotenv
Description
No description provided
Readme MIT 47 MiB
Languages
Jupyter Notebook 85.1%
Python 12.4%
TeX 2.5%