Files

168 lines
4.8 KiB
Python
Raw Permalink Normal View History

2021-01-30 21:49:15 +01:00
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
import numpy as np
import io
import sklearn.metrics
from tensorboard.plugins import projector
import cv2
import os
import shutil
# Stolen from tensorflow official guide:
# https://www.tensorflow.org/tensorboard/image_summaries
def plot_to_image(figure):
"""Converts the matplotlib plot specified by 'figure' to a PNG image and
returns it. The supplied figure is closed and inaccessible after this call."""
# Save the plot to a PNG in memory.
buf = io.BytesIO()
plt.savefig(buf, format="png")
# Closing the figure prevents it from being displayed directly inside
# the notebook.
plt.close(figure)
buf.seek(0)
# Convert PNG buffer to TF image
image = tf.image.decode_png(buf.getvalue(), channels=4)
# Add the batch dimension
image = tf.expand_dims(image, 0)
return image
def image_grid(data, labels, class_names):
# Data should be in (BATCH_SIZE, H, W, C)
assert data.ndim == 4
figure = plt.figure(figsize=(10, 10))
num_images = data.shape[0]
size = int(np.ceil(np.sqrt(num_images)))
for i in range(data.shape[0]):
plt.subplot(size, size, i + 1, title=class_names[labels[i]])
plt.xticks([])
plt.yticks([])
plt.grid(False)
# if grayscale
if data.shape[3] == 1:
plt.imshow(data[i], cmap=plt.cm.binary)
else:
plt.imshow(data[i])
return figure
def get_confusion_matrix(y_labels, logits, class_names):
preds = np.argmax(logits, axis=1)
cm = sklearn.metrics.confusion_matrix(
y_labels, preds, labels=np.arange(len(class_names)),
)
return cm
def plot_confusion_matrix(cm, class_names):
size = len(class_names)
figure = plt.figure(figsize=(size, size))
plt.imshow(cm, interpolation="nearest", cmap=plt.cm.Blues)
plt.title("Confusion Matrix")
indices = np.arange(len(class_names))
plt.xticks(indices, class_names, rotation=45)
plt.yticks(indices, class_names)
# Normalize Confusion Matrix
cm = np.around(cm.astype("float") / cm.sum(axis=1)[:, np.newaxis], decimals=3,)
threshold = cm.max() / 2.0
for i in range(size):
for j in range(size):
color = "white" if cm[i, j] > threshold else "black"
plt.text(
i, j, cm[i, j], horizontalalignment="center", color=color,
)
plt.tight_layout()
plt.xlabel("True Label")
plt.ylabel("Predicted label")
cm_image = plot_to_image(figure)
return cm_image
# Stolen from:
# https://gist.github.com/AndrewBMartin/ab06f4708124ccb4cacc4b158c3cef12
def create_sprite(data):
"""
Tile images into sprite image.
Add any necessary padding
"""
# For B&W or greyscale images
if len(data.shape) == 3:
data = np.tile(data[..., np.newaxis], (1, 1, 1, 3))
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = ((0, n ** 2 - data.shape[0]), (0, 0), (0, 0), (0, 0))
data = np.pad(data, padding, mode="constant", constant_values=0)
# Tile images into sprite
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3, 4))
# print(data.shape) => (n, image_height, n, image_width, 3)
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
# print(data.shape) => (n * image_height, n * image_width, 3)
return data
def plot_to_projector(
x,
feature_vector,
y,
class_names,
log_dir="default_log_dir",
meta_file="metadata.tsv",
):
assert x.ndim == 4 # (BATCH, H, W, C)
if os.path.isdir(log_dir):
shutil.rmtree(log_dir)
# Create a new clean fresh folder :)
os.mkdir(log_dir)
SPRITES_FILE = os.path.join(log_dir, "sprites.png")
sprite = create_sprite(x)
cv2.imwrite(SPRITES_FILE, sprite)
# Generate label names
labels = [class_names[y[i]] for i in range(int(y.shape[0]))]
with open(os.path.join(log_dir, meta_file), "w") as f:
for label in labels:
f.write("{}\n".format(label))
if feature_vector.ndim != 2:
print(
"NOTE: Feature vector is not of form (BATCH, FEATURES)"
" reshaping to try and get it to this form!"
)
feature_vector = tf.reshape(feature_vector, [feature_vector.shape[0], -1])
feature_vector = tf.Variable(feature_vector)
checkpoint = tf.train.Checkpoint(embedding=feature_vector)
checkpoint.save(os.path.join(log_dir, "embeddings.ckpt"))
# Set up config
config = projector.ProjectorConfig()
embedding = config.embeddings.add()
embedding.tensor_name = "embedding/.ATTRIBUTES/VARIABLE_VALUE"
embedding.metadata_path = meta_file
embedding.sprite.image_path = "sprites.png"
embedding.sprite.single_image_dim.extend((x.shape[1], x.shape[2]))
projector.visualize_embeddings(log_dir, config)