Files

53 lines
1.2 KiB
Python
Raw Permalink Normal View History

2021-01-30 21:49:15 +01:00
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import tensorflow as tf
import pandas as pd
from tensorflow import keras
from tensorflow.keras import layers
directory = "data/mnist_images_csv/"
df = pd.read_csv(directory + "train.csv")
file_paths = df["file_name"].values
labels = df["label"].values
ds_train = tf.data.Dataset.from_tensor_slices((file_paths, labels))
def read_image(image_file, label):
image = tf.io.read_file(directory + image_file)
image = tf.image.decode_image(image, channels=1, dtype=tf.float32)
return image, label
def augment(image, label):
# data augmentation here
return image, label
ds_train = ds_train.map(read_image).map(augment).batch(2)
for epoch in range(10):
for x, y in ds_train:
# train here
pass
model = keras.Sequential(
[
layers.Input((28, 28, 1)),
layers.Conv2D(16, 3, padding="same"),
layers.Conv2D(32, 3, padding="same"),
layers.MaxPooling2D(),
layers.Flatten(),
layers.Dense(10),
]
)
model.compile(
optimizer=keras.optimizers.Adam(),
loss=[keras.losses.SparseCategoricalCrossentropy(from_logits=True),],
metrics=["accuracy"],
)
model.fit(ds_train, epochs=10, verbose=2)