Files
Machine-Learning-Collection/ML/TensorFlow/Basics/tutorial9-custom-layers.py

87 lines
2.4 KiB
Python
Raw Permalink Normal View History

2021-01-30 21:49:15 +01:00
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.datasets import mnist
# To Avoid GPU errors
physical_devices = tf.config.list_physical_devices("GPU")
tf.config.experimental.set_memory_growth(physical_devices[0], True)
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(-1, 28 * 28).astype("float32") / 255.0
x_test = x_test.reshape(-1, 28 * 28).astype("float32") / 255.0
class Dense(layers.Layer):
def __init__(self, units, input_dim):
super(Dense, self).__init__()
self.w = self.add_weight(
name="w",
shape=(input_dim, units),
initializer="random_normal",
trainable=True,
)
self.b = self.add_weight(
name="b", shape=(units,), initializer="zeros", trainable=True
)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
class Dense(layers.Layer):
def __init__(self, units):
super(Dense, self).__init__()
self.units = units
def build(self, input_shape):
self.w = self.add_weight(
name="w",
shape=(input_shape[-1], self.units),
initializer="random_normal",
trainable=True,
)
self.b = self.add_weight(
name="b", shape=(self.units,), initializer="random_normal", trainable=True,
)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
class MyReLU(layers.Layer):
def __init__(self):
super(MyReLU, self).__init__()
def call(self, x):
return tf.math.maximum(x, 0)
class MyModel(Model): # model.fit, model.evalute, model.predict
def __init__(self, num_classes=10):
super(MyModel, self).__init__()
self.dense1 = Dense(64)
self.dense2 = Dense(num_classes)
self.relu = MyReLU()
# self.dense1 = layers.Dense(64)
# self.dense3 = layers.Dense(num_classes)
def call(self, x):
x = self.relu(self.dense1(x))
return self.dense2(x)
model = MyModel()
model.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(),
metrics=["accuracy"],
)
model.fit(x_train, y_train, batch_size=32, epochs=2, verbose=2)
model.evaluate(x_test, y_test, batch_size=32, verbose=2)