Files
Aladdin Persson 65b8c80495 Initial commit
2021-01-30 21:49:15 +01:00

157 lines
4.4 KiB
Python

# Tensorflow v.2.3.1
"""
Programmed by the-robot <https://github.com/the-robot>
"""
from block import block
from tensorflow.keras.layers import (
Activation,
AveragePooling2D,
BatchNormalization,
Conv2D,
Dense,
Flatten,
Input,
MaxPooling2D,
ZeroPadding2D,
)
from tensorflow.keras import Model
import tensorflow as tf
import typing
tf.config.run_functions_eagerly(True)
@tf.function
def ResNet(name: str, layers: typing.List[int], input_shape: typing.Tuple[int] = (64, 64, 3), classes: int = 6) -> Model:
"""
Implementation of the popular ResNet architecture.
Arguments:
name -- name of the architecture
layers -- number of blocks per layer
input_shape -- shape of the images of the dataset
classes -- integer, number of classes
Returns:
model -- a Model() instance in Keras
Model Architecture:
Resnet50:
CONV2D -> BATCHNORM -> RELU -> MAXPOOL // conv1
-> CONVBLOCK -> IDBLOCK * 2 // conv2_x
-> CONVBLOCK -> IDBLOCK * 3 // conv3_x
-> CONVBLOCK -> IDBLOCK * 5 // conv4_x
-> CONVBLOCK -> IDBLOCK * 2 // conv5_x
-> AVGPOOL
-> TOPLAYER
Resnet101:
CONV2D -> BATCHNORM -> RELU -> MAXPOOL // conv1
-> CONVBLOCK -> IDBLOCK * 2 // conv2_x
-> CONVBLOCK -> IDBLOCK * 3 // conv3_x
-> CONVBLOCK -> IDBLOCK * 22 // conv4_x
-> CONVBLOCK -> IDBLOCK * 2 // conv5_x
-> AVGPOOL
-> TOPLAYER
Resnet152:
CONV2D -> BATCHNORM -> RELU -> MAXPOOL // conv1
-> CONVBLOCK -> IDBLOCK * 2 // conv2_x
-> CONVBLOCK -> IDBLOCK * 7 // conv3_x
-> CONVBLOCK -> IDBLOCK * 35 // conv4_x
-> CONVBLOCK -> IDBLOCK * 2 // conv5_x
-> AVGPOOL
-> TOPLAYER
"""
# get layers (layer1 is always the same so no need to provide)
layer2, layer3, layer4, layer5 = layers
# convert input shape into tensor
X_input = Input(input_shape)
# zero-padding
X = ZeroPadding2D((3, 3))(X_input)
# conv1
X = Conv2D(
filters = 64,
kernel_size = (7, 7),
strides = (2, 2),
name = "conv1",
kernel_initializer = "glorot_uniform",
)(X)
X = BatchNormalization(axis = 3, name = "bn_conv1")(X)
X = Activation("relu")(X)
X = MaxPooling2D((3, 3), strides = (2, 2))(X)
# conv2_x
X = make_layer(X, layers = layer2, kernel_size = 3, filters = [64, 64, 256], stride = 1, stage_no = 2)
# conv3_x
X = make_layer(X, layers = layer3, kernel_size = 3, filters = [128, 128, 512], stride = 2, stage_no = 3)
# conv4_x
X = make_layer(X, layers = layer4, kernel_size = 3, filters = [256, 256, 1024], stride = 2, stage_no = 4)
# conv5_x
X = make_layer(X, layers = layer5, kernel_size = 3, filters = [512, 512, 2048], stride = 1, stage_no = 5)
# average pooling
X = AveragePooling2D((2, 2), name = "avg_pool")(X)
# output layer
X = Flatten()(X)
X = Dense(
classes,
activation = "softmax",
name="fc" + str(classes),
kernel_initializer = "glorot_uniform"
)(X)
model = Model(inputs = X_input, outputs = X, name = name)
return model
def make_layer(X: tf.Tensor, layers: int, kernel_size: int, filters: typing.List[int], stride: int, stage_no: int) -> tf.Tensor:
"""
Method to create one conv-identity layer for ResNet.
Arguments:
X -- input tensor
layers -- number of blocks per layer
kernel_size -- size of the kernel for the block
filters -- number of filters/channels
stride -- number of stride for downsampling the input
stage_no -- stage number just to name the layer
Returns:
X -- output tensor
"""
# create convolution block
X = block(
X,
kernel_size = kernel_size,
filters = filters,
stage_no = stage_no,
block_name = "a",
is_conv_layer = True,
stride = stride
)
# create identity block
block_name_ordinal = ord("b")
for _ in range(layers - 1):
X = block(
X,
kernel_size = kernel_size,
filters = filters,
stage_no = stage_no,
block_name = chr(block_name_ordinal)
)
block_name_ordinal += 1
return X