mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-20 13:50:41 +00:00
152 lines
4.3 KiB
Python
152 lines
4.3 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
class residual_template(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(self, in_channels, out_channels, stride=1, identity_downsample=None):
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(out_channels)
|
|
self.conv2 = nn.Conv2d(
|
|
out_channels,
|
|
out_channels,
|
|
kernel_size=3,
|
|
stride=stride,
|
|
padding=1,
|
|
bias=False,
|
|
)
|
|
self.bn2 = nn.BatchNorm2d(out_channels)
|
|
self.conv3 = nn.Conv2d(
|
|
out_channels, out_channels * self.expansion, kernel_size=1, bias=False
|
|
)
|
|
self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.identity_downsample = identity_downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv3(out)
|
|
out = self.bn3(out)
|
|
|
|
if self.identity_downsample is not None:
|
|
residual = self.identity_downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class ResNet(nn.Module):
|
|
def __init__(self, residual_template, layers, image_channel, num_classes=10):
|
|
self.in_channels = 64
|
|
super().__init__()
|
|
|
|
self.conv1 = nn.Conv2d(
|
|
in_channels=image_channel,
|
|
out_channels=64,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
bias=False,
|
|
)
|
|
self.bn1 = nn.BatchNorm2d(64)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.layer1 = self._make_layer(
|
|
residual_template, layers[0], channels=64, stride=1
|
|
)
|
|
self.layer2 = self._make_layer(
|
|
residual_template, layers[1], channels=128, stride=2
|
|
)
|
|
self.layer3 = self._make_layer(
|
|
residual_template, layers[2], channels=256, stride=2
|
|
)
|
|
self.layer4 = self._make_layer(
|
|
residual_template, layers[3], channels=512, stride=2
|
|
)
|
|
self.avgpool = nn.AvgPool2d(kernel_size=4, stride=1)
|
|
self.fc = nn.Linear(512 * residual_template.expansion, num_classes)
|
|
|
|
# initialize weights for conv layers, batch layers
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def _make_layer(self, residual_template, num_residuals_blocks, channels, stride):
|
|
identity_downsample = None
|
|
|
|
if stride != 1 or self.in_channels != channels * residual_template.expansion:
|
|
identity_downsample = nn.Sequential(
|
|
nn.Conv2d(
|
|
self.in_channels,
|
|
channels * residual_template.expansion,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
bias=False,
|
|
),
|
|
nn.BatchNorm2d(channels * residual_template.expansion),
|
|
)
|
|
|
|
layers = []
|
|
layers.append(
|
|
residual_template(self.in_channels, channels, stride, identity_downsample)
|
|
)
|
|
self.in_channels = channels * residual_template.expansion
|
|
|
|
for i in range(1, num_residuals_blocks):
|
|
layers.append(residual_template(self.in_channels, channels))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
x = self.layer4(x)
|
|
|
|
x = self.avgpool(x)
|
|
x = x.view(x.size(0), -1)
|
|
x = self.fc(x)
|
|
|
|
return x
|
|
|
|
|
|
def ResNet50(img_channel):
|
|
return ResNet(residual_template, [3, 4, 6, 3], img_channel)
|
|
|
|
|
|
def ResNet101(img_channel):
|
|
return ResNet(residual_template, [3, 4, 23, 3], img_channel)
|
|
|
|
|
|
def ResNet152(img_channel):
|
|
return ResNet(residual_template, [3, 8, 36, 3], img_channel)
|
|
|
|
|
|
def test():
|
|
net = ResNet152(img_channel=1)
|
|
y = net(torch.randn(64, 1, 32, 32))
|
|
print(y.size())
|
|
|
|
|
|
# test()
|