mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-20 13:50:41 +00:00
37 lines
976 B
Python
37 lines
976 B
Python
import random
|
|
import cv2
|
|
from matplotlib import pyplot as plt
|
|
import matplotlib.patches as patches
|
|
import numpy as np
|
|
import albumentations as A
|
|
|
|
|
|
def visualize(image):
|
|
plt.figure(figsize=(10, 10))
|
|
plt.axis('off')
|
|
plt.imshow(image)
|
|
plt.show()
|
|
|
|
|
|
def plot_examples(images, bboxes=None):
|
|
fig = plt.figure(figsize=(15, 15))
|
|
columns = 4
|
|
rows = 5
|
|
|
|
for i in range(1, len(images)):
|
|
if bboxes is not None:
|
|
img = visualize_bbox(images[i - 1], bboxes[i - 1], class_name="Elon")
|
|
else:
|
|
img = images[i-1]
|
|
fig.add_subplot(rows, columns, i)
|
|
plt.imshow(img)
|
|
plt.show()
|
|
|
|
|
|
# From https://albumentations.ai/docs/examples/example_bboxes/
|
|
def visualize_bbox(img, bbox, class_name, color=(255, 0, 0), thickness=5):
|
|
"""Visualizes a single bounding box on the image"""
|
|
x_min, y_min, x_max, y_max = map(int, bbox)
|
|
cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color, thickness)
|
|
return img
|