mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 11:18:01 +00:00
88 lines
2.5 KiB
Python
88 lines
2.5 KiB
Python
|
|
import os
|
||
|
|
|
||
|
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
||
|
|
import tensorflow as tf
|
||
|
|
from tensorflow import keras
|
||
|
|
from tensorflow.keras import layers
|
||
|
|
import tensorflow_datasets as tfds
|
||
|
|
|
||
|
|
(ds_train, ds_test), ds_info = tfds.load(
|
||
|
|
"cifar10",
|
||
|
|
split=["train", "test"],
|
||
|
|
shuffle_files=True,
|
||
|
|
as_supervised=True, # will return tuple (img, label) otherwise dict
|
||
|
|
with_info=True, # able to get info about dataset
|
||
|
|
)
|
||
|
|
|
||
|
|
|
||
|
|
def normalize_img(image, label):
|
||
|
|
"""Normalizes images"""
|
||
|
|
return tf.cast(image, tf.float32) / 255.0, label
|
||
|
|
|
||
|
|
|
||
|
|
AUTOTUNE = tf.data.experimental.AUTOTUNE
|
||
|
|
BATCH_SIZE = 32
|
||
|
|
|
||
|
|
|
||
|
|
def augment(image, label):
|
||
|
|
new_height = new_width = 32
|
||
|
|
image = tf.image.resize(image, (new_height, new_width))
|
||
|
|
|
||
|
|
if tf.random.uniform((), minval=0, maxval=1) < 0.1:
|
||
|
|
image = tf.tile(tf.image.rgb_to_grayscale(image), [1, 1, 3])
|
||
|
|
|
||
|
|
image = tf.image.random_brightness(image, max_delta=0.1)
|
||
|
|
image = tf.image.random_contrast(image, lower=0.1, upper=0.2)
|
||
|
|
|
||
|
|
# a left upside down flipped is still a dog ;)
|
||
|
|
image = tf.image.random_flip_left_right(image) # 50%
|
||
|
|
# image = tf.image.random_flip_up_down(image) #%50%
|
||
|
|
|
||
|
|
return image, label
|
||
|
|
|
||
|
|
|
||
|
|
# Setup for train dataset
|
||
|
|
ds_train = ds_train.map(normalize_img, num_parallel_calls=AUTOTUNE)
|
||
|
|
ds_train = ds_train.cache()
|
||
|
|
ds_train = ds_train.shuffle(ds_info.splits["train"].num_examples)
|
||
|
|
# ds_train = ds_train.map(augment)
|
||
|
|
ds_train = ds_train.batch(BATCH_SIZE)
|
||
|
|
ds_train = ds_train.prefetch(AUTOTUNE)
|
||
|
|
|
||
|
|
# Setup for test Dataset
|
||
|
|
ds_test = ds_train.map(normalize_img, num_parallel_calls=AUTOTUNE)
|
||
|
|
ds_test = ds_train.batch(BATCH_SIZE)
|
||
|
|
ds_test = ds_train.prefetch(AUTOTUNE)
|
||
|
|
|
||
|
|
# TF >= 2.3.0
|
||
|
|
data_augmentation = keras.Sequential(
|
||
|
|
[
|
||
|
|
layers.experimental.preprocessing.Resizing(height=32, width=32,),
|
||
|
|
layers.experimental.preprocessing.RandomFlip(mode="horizontal"),
|
||
|
|
layers.experimental.preprocessing.RandomContrast(factor=0.1,),
|
||
|
|
]
|
||
|
|
)
|
||
|
|
|
||
|
|
model = keras.Sequential(
|
||
|
|
[
|
||
|
|
keras.Input((32, 32, 3)),
|
||
|
|
data_augmentation,
|
||
|
|
layers.Conv2D(4, 3, padding="same", activation="relu"),
|
||
|
|
layers.Conv2D(8, 3, padding="same", activation="relu"),
|
||
|
|
layers.MaxPooling2D(),
|
||
|
|
layers.Conv2D(16, 3, padding="same", activation="relu"),
|
||
|
|
layers.Flatten(),
|
||
|
|
layers.Dense(64, activation="relu"),
|
||
|
|
layers.Dense(10),
|
||
|
|
]
|
||
|
|
)
|
||
|
|
|
||
|
|
model.compile(
|
||
|
|
optimizer=keras.optimizers.Adam(3e-4),
|
||
|
|
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
||
|
|
metrics=["accuracy"],
|
||
|
|
)
|
||
|
|
|
||
|
|
model.fit(ds_train, epochs=5, verbose=2)
|
||
|
|
model.evaluate(ds_test)
|